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Abstract 

Bacterial communities found in and on the human body are not only used in studying 

human health conditions but are also effective in differentiating individuals due to their distinct 

profiles. Human palm regions harbor relatively more diverse bacterial communities and are 

indicative of population groups, life styles, geographic locations, age groups and health conditions. 

Sequences extracted from hypervariable region V3 of the 16S rRNA bacterial gene of hand 

bacterial samples from 9 different population groups were classified into Operational Taxonomic 

Units (OTU) with GreenGenes reference taxonomy using RDP (Ribosomal Database Project) 

classifier. Frequencies of identified OTUs were used to study dissimilarities between samples by 

calculating the Kullback-Leibler Divergence (KLD) between every two samples. In addition to 

OTU frequencies, the frequencies of nucleotide k-mers from each OTU sequence were used to 

study the dissimilarities between samples. Based on the structure, 65 nucleotides of V3 

hypervariable region were mapped into 47 elements, and distribution of k-mers from these mapped 

elements were used to determine dissimilarities between samples. Furthermore, a new technique 

was applied to classify sequences where sequences were clustered based on their k-mer frequency 

profile and a unique signature is assigned to every cluster. Frequencies of these signature clusters 

were used to calculate the KLD between different samples. This method classifies the unknown 

sequences that were ignored in OTU based methods. Ensemble learning method is applied to each 

of the above case of k-mers to identify the population group of a given hand bacterial sample. 

Samples were identified with a range of 51-98 % accuracy for different cases of k-mer distribution. 

Samples were classified with greater accuracy with k-mer classified sequences than with OTU 

sequences. Though applied on a small group of samples, these results provide a basis for the use 

of k-mer distributions in classifying and identifying individuals which could perform better on a 

broader range of time-varying dataset from other regions of 16S rRNA or even other genes, such 

as 23S rRNA of bacteria 
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1.1 Executive Summary  

 Human skin is a complex ecosystem with diverse groups of both stable and variable 

bacteria [1]. Stable bacteria are abundant in an individual and are less distinct among individuals, 

whereas the varying bacteria that occur in smaller proportions in an individual are significantly 

distinct among people, making skin bacteria a promising tool in distinguishing humans [2]. Skin 

bacterial composition is found to be unique even in twins, though with high similarity because of 

shared genetics and environment, making skin bacteria-based identification more promising [3]. 

High interindividual variability in human skin bacteria composition lead to skin bacteria being a 

potential supplement in forensic identification [4]. Furthermore, skin bacterial communities are 

stable in extreme environmental conditions, offering a better target in forensic investigations than 

human DNA, which is susceptible to extreme environments [5][6]. In addition to distinction among 

individuals, bacterial groups also vary across different body sites within an individual, owing to 

specific characteristics of the skin site [7].  

 A detailed study of the microbiome of various parts of the human body like skin, oral 

cavity, gastrointestinal tract, urogenital parts, blood, eye and airway parts was initiated with the 

Human Microbiome project in 2007, as an extension of the Human Genome project [8]. 

Researchers later conducted several experiments to learn the characteristics of skin and other 

microbiome including the features that affect them. Bacterial communities identified on human 

skin are observed to vary among individuals with environment, ethnicity, lifestyle, diet, age, 

gender, medication, birth process (natural or C-section) and personal hygiene habits 

[1][9][10][11][12][13][14]. Phylogenetics of bacterial groups is carried out by sequencing and 

classifying the variable regions of 16S rRNA gene (ribosomal Ribonucleic Acid) [15][16][17]. 

Species-level clustering and comparing of 16S rRNA gene sequences from 10 healthy adults over 
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20 different skin sites revealed that bacterial groups within an individual are more similar among 

the sites with similar physiological features [7]. A Similar study of the variable region V2 of 16S 

rRNA gene sequences from 27 body sites of 7-9 healthy adults over 4 occasions supports the 

inference that skin microbiome within an individual varies with the topography of skin [18].  

 Bacteria located on dry skin sites like hands (forearm, palms) are the most rich (highest 

number of distinct bacterial clusters) and evenly distributed i.e. size of clusters with 16S rRNA 

bacterial sequences are relatively equal [7][18]. Phylogenetic analysis of 16S rRNA genes 

collected from the palm surfaces of 51 young healthy adults finds that, on average, the hand surface 

harbors over 150 unique species level bacteria which is more than the unique bacterial types found 

on skin, or other human-associated microbial habitats like gut and mouth [9]. Bacterial 

communities identified on the hand skin of women, from two different populations, had 

considerable differences, which could be the result of biogeographical, genetic, cultural and 

behavioral dissimilarities [19]. Study of skin bacteria from 7 sites of 71 participants from different 

age groups, living conditions and genders verify that highest diversity of bacteria is found in 

samples from forearm and back of the hands [13]. PCoA plots of weighed UniFrac distances [20] 

between the same samples demonstrated clustering of samples from similar age group, gender, and 

living conditions [13]. Genus- level comparison between 200 skin samples from different 

ethnicities (Hong Kong, China, USA and Tanzania) reveals that skin bacteria is noticeably similar 

in individuals from the same ethnicity, with most diverse and relatively abundant bacteria in palm 

regions [21]. Taxonomic classification of variable region V3 of 16S rRNA gene sequences of hand 

bacterial samples from 9 different ethnicities (Caucasian, African, African American, Asian, Asian 

Indian, Hispanic, Turkish, Middle Eastern and Chinese) showed similar distribution of bacterial 

groups among people from the same ethnicity; moreover, PCoA plots on UniFrac weighed and 
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unweighted distances exhibited clustering of samples from similar descent, which indicates hand 

bacteria can be a potential biometric identifier [22]. 

 Variations in hand bacterial 16S genome are largely studied by measuring the diversity and 

dissimilarity indices between species or genus-level operational taxonomic units (OTU) that are 

identified and classified using publicly available 16S reference genomes [9-14,18-21]. The main 

objective of this thesis is to develop a method to differentiate human populations based on the 

bacteria composition found on their palm regions. This will be accomplished by calculating the 

Kullback-Leibler Divergence between the frequencies of sequence clusters found in the variable 

region V3 of 16S rRNA gene extracted from hand bacterial samples of different individuals. 

Moreover, unclassified sequences that are ignored when studying OTUs are included here in this 

project by developing a classification method that considers the actual DNA symbols in terms of 

A, C, G and T (Adenine, Cytosine, Guanine and Thymine) profile of sequences to cluster 

sequences. Additionally, information from mapping actual RNA sequences to the structure of the 

16S rRNA gene is considered to provide higher accuracy in determining the population group. 

 

1.2 Skin Microbiome  

Human skin is the largest organ of the human body, covering and protecting the internal 

organs and receiving sensory stimuli from the environment. The color of human skin has been a 

major factor in recording and recognizing the identities of human communities for ages. Human 

skin, in addition to shielding human organs, also acts as a habitat for various microorganisms – 

bacteria, algae, fungi and mites shown in Fig 1.1. Although all microorganisms are often perceived 

as toxic, many of the microbiota on human skin are harmless and, in some cases, have vital function 

beneficial to humans [1]. The colonization of microorganisms on human skin widely differs with 

the factors like body location, internal host factors, and external environmental factors. Human 
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skin is a cultural medium because of the fact that it’s composition is influenced by human genetics, 

diet, lifestyle and the area we live in [3][13].  

 

Fig 1.1 The Skin Microbiome 

Skin in general is comprised of a fixed group of microorganisms, which are usually 

beneficial to the skin, and transient microorganisms, which arise from environment and last for 

hours to a lifetime [2][1]. The unique physiological and anatomical differences caused in an 

individual’s skin, by hormone production, sweat rate, sebum production, surface pH, skin 

thickness, hair growth, frequent washing, overuse of antibiotics, and cosmetic use, influence skin 

microbiome, resulting in a significantly distinct skin microbiome [1][23]. Variation in the 

composition and characteristics of skin microbiome is observed to affect human skin condition 

and diseases [12]. In addition to host and external environmental factors, host-microbe and 

microbe-microbe interactions are revealed to have an important role in manipulating diversity 

patterns of skin microbiome [23]. 
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1.3 Factors influencing skin microbiome  

The following is a detailed discussion of the human factors that influence the composition of the 

skin microbiome. 

 

Skin site: Human skin is classified into dry, moist, or sebaceous at various regions of the body. 

Different types of skin offer different types of environments for the existence and breeding of 

microorganisms, eventually causing variation among the bacterial communities over distinctive 

skin regions. Species-level analysis of 16S rRNA gene sequences over various skin sites shows 

that bacterial communities are more diverse in dry sites than in oily sites [7]. Dry skin sites, like 

forearms or palms, provide a better environment for the existence of bacteria, and thus, have more 

diverse bacterial communities when compared to sebaceous sites like upper back or skin behind 

the ear, which often exhibit less bacterial diversity [24]. 

  

 After comparing the variable region V4 of 16S rRNA genes from 645 skin bacterial 

samples from three different sites of 110 men from 6 ethnic groups, it is observed that, body site 

is important in determining the bacterial communities, and bacterial communities are more diverse 

in dry skin sites like palms and forearm [25]. Hands have a more dynamic microbial community 

over time when compared with other skin sites. Bacterial phylotypes per individual are found the 

highest in palm skin compared to forearm or elbow skin [26] 
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Fig 1.2 Skin sites and their nature 

Ethnicity: People who can claim similar ancestry, language, culture or nation are considered an 

ethnic group. Humans from same ethnic group tend to have a similar gene pool. It is a known fact 

that the color of the skin varies over different ethnicities. In addition to the color of the skin, the 

bacterial composition of the skin at various sites is found to differ with ethnicity as well [21].  

Hand skin microbiome, besides having the highest bacterial diversity, varies significantly over 

different populations [19]. Individuals of similar descent tend to have similar profiles of taxonomic 

groups on their palm regions [22]. 
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Host Genetic factor: Human genetics not only affect physical appearance and individual traits, 

but also alter the skin microbial communities [3][1]. To get more insight into influence of genetics 

on skin microbiome, a study was conducted on 45 individuals, including monozygotic and 

dizygotic twins along with their mothers. Taxonomic classification of variable regions V2 and V3 

of 16S rRNA gene from their skin microbial samples suggest that, samples with highest amount 

of shared genetics has most similar bacterial groups i.e., highest similarity is found in monozygotic 

samples, followed by dizygotic twins, mother-twin and unrelated samples [3]. 

 

Hygiene and Medication: Multiple hygiene products that are used on a daily basis on human 

skin have a noticeable effect on the diversity of skin microbial groups. Genus-level study and 

comparison of variable region V4 of 16S rDNA collected from the armpits of 7 individuals over a 

period of week suggest that, use of antiperspirants and deodorants result in more diverse bacterial 

composition on the armpit skin [14]. Antiperspirants are made of aluminum-based salts to reduce 

sweat by forming precipitates and, therefore, are believed to inhibit the growth of microbial 

communities causing higher density of bacteria, and rich bacterial species, unlike deodorants 

which are ethanol-based and are more water soluble and easily washed away [27][14]. Also, use 

of Antibiotics for dermatologic conditions influence the microbial composition on the skin [12]   

 

Age Groups: Humans are born with a set of bacteria which evolves over time, with many new 

bacteria added, many of the existing bacteria diminished, or hybrid species formed from various 

combinations [24]. The microbial communities on skin are more diverse among different age 

groups than in the same age group, indicating that the composition of skin flora is more similar 

among same age group individuals, than across different age groups [16]. In a study of bacterial 
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samples from 190 volunteers, there was also another, rather surprising, observation that the 

children from a semi-nomadic population had more diverse bacterial community than the adults, 

suggesting a great deal of progression in bacterial community evolution from childhood [28] 

 

 

Fig 1.3 Factors that influence skin microbiome 

Living Conditions: Living conditions are known to influence the health and well-being of humans 

and, therefore, also effect the skin microbiome of people. Urban and rural living conditions differ 

in various factors such as quality of food and water, pollution, lifestyle etc. Urban populations are 

composed of people who spend most of their time indoors and, therefore, most of their microbial 
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communities are human derived, and on the other hand, rural populations spend a significant 

amount of time outdoors, exposed to soil, dirt and the environment, resulting in a more diverse and 

rich microbiome on their skin [13]. Also, the intragroup variation among rural dwellers is higher 

than that found in urban populations [13]. Thus, comparison of skin-associated bacterial 

community structure, and composition, might helps in deducing if the subject is from an urban or 

a rural environment. 

 

1.4 Other significant microbiome of the human body 

Gut Microbiome: 

  The human digestive tract, also known as the gut, is another region of the human body 

with a diverse microbiome. In the process of digestion, the gut is exposed to various 

microorganisms from food, drinks, and everything entering the body through the digestive track. 

The factors that affect the skin microbiome tend to affect the gut microbiome as well, in a similar 

way. The composition and the interactions between the microbial communities of the human gut 

vary over geographical locations and across age groups of individuals [29]. A study of gut 

microbiota obtained from fecal samples of 314 healthy young adults from 7 ethnicities throughout 

China indicates that similarities in gut microbiota exist more in samples from the same 

geographical/ethnic groups than in samples with similar lifestyles [30]. The composition of gut 

microbiota is relatively more stable in adults than in children. Microbial communities of older 

population from urban towns were more similar to the microbiome of children from urban towns 

than to the microbial communities observed in older populations from villages known for having 

higher life expectancy, indicating that the environment is a stronger determinant in diversity of gut 

microbiota than age [31]. 
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Fig 1.4 Gut microbiome location in a human body 

Personal factors like gender, body mass index (BMI) and dietary habits have a significant 

effect on the gut microbiome [32]. Statistical analysis of taxonomic assignment to 16S rRNA genes 

of gut bacteria collected from 82 humans showed that a certain gut bacterial species was lesser in 

women than men and the association between BMI and overall gut bacteria was stronger in women 

than in men [32]. Fiber from different variety of foods such as beans, fruits and vegetables was 

associated with abundance of a certain bacterial species respectively and a better study and 

understanding of these relationships may lead to significant inferences for gastrointestinal health 

and disease prevention [32]. Composition of gut bacteria in obese and lean people are different at 

genus, species and phylum levels, supporting the idea of studying gut microbiome for the etiology 

of various human diseases [33].  

Using an unconventional study design, gut bacteria from fecal samples, sewage of 71 

different cities of the US was examined to see if they lend insight into the gut microbial community 

diversity between different ethnicities. Distribution patterns among municipal sewage 

communities reflected variation in the ethnicities, and the samples represented lean or obese 

populations with 81 to 89% accuracy, affirming that microbes found in sewage can be an indicator 
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of the fecal microbial communities in human populations, and thus, the traits of the human gut 

microbiome in different populations [34]. 

 

Oral Microbiome:  

 

Fig 1.5 Oral microbiome location in a human body [35] 

 As the name suggests, the oral microbiome includes the microbial communities in the oral 

cavity, which is commonly called mouth. The oral microbiome is the second most diverse 

microbiome in the human body, highly specific at the species level [36], sheltering over 700 

species of bacteria [37]. An individuals' diet, lifestyle and ethnicity play a vital role in the 

variability of oral bacteria among individuals [37][38]. Other habits like cigarette smoking can 

also influence the composition of oral microbiome [39]. Oral bacterial samples from Alaskans, 

Germans, and Africans reveal that the degree of diversity is significantly high, with relatively 

higher similarities between Alaskans and Germans, confirming the effect of ethnicity on the 
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composition of gut microbiome [38]. Oral microbiome plays a critical role in maintaining 

physiological, metabolic and immunological functions of the body [40][36]. 

 

1.5 Advantages of skin microbiome and its applications 

Skin has always been related to beauty but, in fact, it plays a vital role in overall human 

health. Skin acts as a home to trillions of microorganisms which can be classified into diverse 

species of bacteria and fungi. Scientists now consider the skin microbiome as an important organ 

of our body that, when properly managed, contributes to our health and well-being[12]. The skin 

microbiome is found to relate to many fundamental health conditions like weight, mental health, 

immunity, diabetes, blood pressure, heart issues, and even cancer. Study of skin microbiome could 

greatly contribute to diagnosis and treatment of dermatological issues. The deep relationship 

between host and the skin microbiome contributes to its distinctive composition, potentially 

leading to human identification applications in the fields of biometric identification and forensic 

investigations.  

 Since its first use in 1986, human DNA fingerprinting has become widely used in forensic 

and criminal investigations. But, very often, criminal investigations are delayed due to lack of 

priority or too many cases to consider, causing human DNA evidence to become ineffective and 

eventually hindering the quality of investigation [41].  Even after solving hundreds of thousands 

of cases, there are still many more cases that couldn’t be solved because of contamination or 

destruction of evidence, requiring the need for a better line of evidence to track the culprit [42]. 

One such line of evidence that came into light recently is the study of microorganisms in and on 

human body. The skin microbiome has shown uniqueness, especially at sub species level, making 

it a potential marker for human identification [42].  
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 When samples collected over months and years were studied, it was observed that, in spite 

of constant exposure to a changing environment, the skin microbiome is relatively stable over time, 

making it a prospective target in forensic studies [6].  Humans leave a trace of millions of bacteria 

everywhere they go, or on things they touch, which makes the microbial sample collection 

moderately easier than looking for DNA samples at the crime scene [42]. Skin microbiome can be 

found on various surfaces, for example, keyboards, elevator buttons, telephones and shoes, and 

even from extreme conditions of -80C, without much damage to the bacterial DNA 

[4][43][44][45]. Bacterial communities found on a fabric, or any surface in a crime scene can be 

used to compare to the skin microbiome or microbiome found on any personal belongings, and 

narrow down suspects in an investigation [46][43][47]. 

  The use of hand bacterial samples in forensic investigation was tested and it was found 

that, the similarity index is higher among the samples from same individual over time, and also 

the clusters from different individuals could be distinguished even if they were collected under 

different conditions [48]. Bacterial communities found on the fingertips of individuals and the keys 

of their personal computer keyboards were more similar to each other, than they were with other 

keyboard keys or individuals’ fingertips, indicating that, we can match an object to its owner using 

skin bacteria [4]. Analysis of hand bacteria is relatively faster, and helps in saving time and labor, 

by narrowing the number of suspects, thus increasing the efficiency of a criminal investigation 

[48]. Postmortem skin microbiome can also be used in forensic death investigations, to analyze 

the amount of time after death [49]. 

 

1.6 History of Human Microbiome study 

 To study human and non-human cells that exist within and upon the human body, the 

National Institute of Health (NIH) launched the Human Microbiome Project (HMP) in 2008 and 
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studied bacterial samples from multiple body sites of 250 individuals. The primary body sites 

included in the project are oral cavity, skin, gut, vagina and nasal/lung. The HMP took advantage 

of high-throughput gene sequencing technologies for a detailed study of the human microbiome, 

examining multiple factors of the human microbiome to associate its composition and variation 

with population, genotype, gender, disease, age, nutrition, medication, and environment. Goals of 

HMP included developing a reference set of sequences for microbial genomes, to explore the 

changes occurring in the microbiome with various diseases and vice-versa and to develop new 

technology and tools for the computational analysis over various microbial sequences [8] 

Achievements of the Human Microbiome Project included: 

• 10000 more species were discovered to live in human ecosystem and a new database was 

developed with ~99% of its genera identified  

• The data acquired from the Human microbiome project led to numerous clinical researches, 

revelations and applications 

• Pharmaceutical microbiologists were able to use the derived implications of various 

microorganisms from HMP data to enhance the production of pharmaceutical products 

 

 The human microbiome, an important feature of human physiology is affected in various 

health conditions becoming a supplementary data in the study of various diseases and their 

effects on the human body [50]. Apparent differences established in microbial communities in 

and on the human body of different individuals gives insight into how different and diverse they 

become over time. Other significant observations that were made in the Human Microbiome 

Project are that human survival is more strongly linked to microbial genes rather than human 

genes, and that bacterial protein coding genes are about 360 times more abundant than human 
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genes [51]. Though the human microbiome changes over time with disease and medication, it 

eventually arrives back at a baseline state, even with any change in the type of bacterial 

composition. 

 

1.7 Prokaryotic 16S rRNA 

RNA is a macromolecule that plays an essential role in various biological processes. RNA 

(Ribonucleic Acid) is a chain of nucleotides, but as a single-strand folded onto itself, rather than a 

paired double-strand (Fig 1.7). Nucleotides (Fig 1.6) are made of 5-carbon sugar molecule, 

nitrogenous base and a nucleobase. Adenine (A), Cytosine (C), Guanine (G), Thymine(T) and 

Uracil (U) are the five primary nucleobases that are fundamental units of the genetic code: A, C, 

G and U are found in RNA while A, C, G and T are found in DNA. In microbial ecology studies, 

scientists compare the bits of rRNA(Ribosomal Ribonucleic Acid) to the previously known 

reference microbes to classify the microbes or identify a new microbe. Ribosomes in all living 

beings act as the gene-translating machines. A gene from a piece of DNA is copied into a strand 

of messenger RNA (mRNA) and delivered from the cell nucleus into the cytosol where the 

ribosomes latch onto this mRNA and move along the mRNA strand, reading the code contained 

in its sequence of nucleotide bases (A, C, G & U) and stringing the right amino acids together 

based on the code to build protein chains. The slight changes in the genes of ribosomal RNA over 

the years provide clues as to how closely or distantly various organisms are related. 
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Fig 1.6 Structure of Nucleotide [52] 

 

Fig 1.7 Structure of RNA vs structure of DNA [53] 
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Fig 1.8 Ribosome in Prokaryotes 

16S rRNA is a part of 30S (S for Svedberg unit) small subunit of 70S ribosomes (Fig 1.8) 

in prokaryotes. 16S rRNA gene is short with just 1,542 nucleotide bases making it easy and cheap 

to copy and sequence. When a sample is collected, it is cleaned, purified and the needed rRNA is 

pulled out from other RNA, DNA and extra unwanted fragments. Though 16S rRNA genes from 

different microbes have a few different nucleotides spread through the sequences, nucleotides at 

the very beginning or end of the gene are similar from organism to organism. Scientists use 

numerous copies of another bit of RNA called a primer, which is a mirror image of a short bit of 

RNA or single strand of DNA; that is, its sequence of nucleotides is the direct complement to the 

sequence of nucleotides in a known part of the target RNA or DNA.  

In this research, the primer is the mirror image of the beginning or end of the 16S rRNA 

sequence. Since complementary nucleotides pair up into a bond, the primer enables the scientist 

to pull out the 16S rRNA in the sample. Then using Polymerase Chain Reaction (PCR), millions 

of copies of these genes are made to have enough 16S rRNA for its comparison to the libraries of 
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stored 16S rRNA genes from numerous known bacteria. The sequences which were classified into 

numerous genera were used to distinguish the samples over different population groups. 

 

1.8 K-mers in DNA analysis: 

 Counting of k-mers in DNA sequence data has been an efficient way in bioinformatics to 

correct errors in sequences reads [54]. In an effort to minimize the memory issues that arise while 

storing k-mer counts of a large data set, a probabilistic data structure called bloom filter was 

designed to store all the observed k-mers with reduced memory requirements [55]. A similar filter 

was designed in a cache-efficient technique to reduce the experimental runtime[56]. K-mer 

analysis when aided with positional resolution showed correlation between k-mer frequencies and 

several genes, demonstrating similarities between classified and unclassified viruses, which may 

be of significant use in future taxonomic research [57]. Analysis of  k-mer spectrum resulted in 

significant dissimilarity between the human gut metagenomes of different populations [58].  

Moreover, dissimilarity measure based on k-mer analysis yields a better perspective than the 

techniques based on alignment against reference sequence sets[58]. 

 

1.9 Problem Statement 

 The main objective of this research is to study the variation of skin bacterial communities 

on the palm region of people for population group classification. For this particular research, 69 

hand-swab samples collected from 39 people of 9 different population groups were used to analyze 

the third hypervariable region (V3) of the bacterial 16S ribosomal RNA (rRNA) gene. Using an 

Illumina MiSeq sequencer, PCR amplified 65nt long V3 region of 16S rRNA is sequenced and the 

data is stored in FASTQ files. The sequenced samples were then classified into various taxonomy 

levels using RDP (Ribosomal Database Project) classifier. Frequencies of nucleotides (A-Adenine, 



www.manaraa.com
20 

C-Cytosine, G-Guanine and T-Thymine) and their combinations (AA, AC, AG, AT…TT, AAA, 

AAC, AAG, …. TTT) in sequences classified as the same OTU had similar profile charts. 

Therefore, the frequencies of A, C, G and T, AA, AC, AG, AT, … TT and AAA, AAC, AAG, … 

TTT are considered as k-mer signatures (k=1, k=2 and k=3 respectively) for all classified OTUs 

in a sample. Kullback-Leibler Divergence (KLD) between the frequencies of k-mers for Genus-

level OTUs classified from all the samples is considered as the measure of dissimilarity between 

the samples. In an attempt to consider the unclassified sequences which are ignored while using 

known OTUs to measure the dissimilarity between samples, a novel classification method is 

developed to cluster the sequences according to their k-mer profiles. In addition to comparing the 

k-mer distribution of the V3 region of bacterial 16S rRNA genes, the structure of the V3 region 

and the bonds involved in building the structure were considered, to map the 65 nucleotide 

positions into 47 new elements. These new redistributed 47 elements of the V3 region are then 

considered as designated sequences and clustered into mutually exclusive groups. K-mer 

signatures (k=1 and 2) are assigned to each cluster and the KLD between distribution of these 

clusters is used to calculate the distance between different samples. Resultant distances between 

samples are used to build phylogenetic trees and Principle Coordinate Analysis (PCOA) plots, to 

study the grouping of samples from different population groups 

 

1.10 Conclusions and Future work 

 The set goal of classifying population groups by studying the hypervariable region V3 of 

16S rRNA genome of hand bacterial samples was achieved with 79.5 % accuracy. The highpoint 

of this thesis was, the development of a novel method to include unclassified sequences that are 

generally ignored in other OTU methods, through a novel k-mer classification model. Among 9 

different population groups from all over the world, 6 population groups namely African, Turkish, 
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Chinese, Hispanic, Middle Eastern and Asian achieved accuracy greater than 75%, with African 

and Turkish achieving more than 90% accuracy. k-mer frequencies from mapped sequences 

resulted in comparatively better performance than the conventional OTU method, encouraging the 

idea of k-mer usage.  

 Nevertheless, hand bacterial samples that were included in this study does not specify other 

factors that could influence skin microbiome, for example, there is no record of when the 

individual last washed their hands before sample collection, or if the individual has lived in a 

country different from that of the origin of their population group. Also, among 9 hypervariable 

regions, only a single region was considered for the extraction and analysis of nucleotide 

sequences. Therefore, there is a scope for improving the methodology by considering other 

hypervariable regions of 16S rRNA. Considering multiple hypervariable regions could be 

beneficial while studying the structure of 16S rRNA and would allow using longer k-mers for 

classification, which was limited to k-3 in this research since we have only 65 nucleotides in the 

V3 region. Extending the k-mer study to other parts of 70S ribosome i.e. 23S RNA could offer 

better understanding of bacteria communities. Furthermore, increasing the number of samples 

from different population groups would improve the performance of the classification model by 

studying more and better patterns. 

 

1.11 Thesis Organization 

 Following this introduction, this thesis is distributed into four chapters describing the 

various technologies and applications adopted in the study of bacterial 16S rRNA. Chapter 2 

explains why the V3 hypervariable region is chosen for this project. Various technologies and 

platforms used, in culturing and studying the samples are also described in this chapter. Chapter 

3 gives a detailed description of the data collection and the phases involved in preparing the data 
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for the bioinformatics analysis. Chapter 4 gives an account of the new classification technique 

applied in this project, and the observed performance of the technique. Chapter 5 summarizes the 

thesis and concludes with future work. 
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 Theory 
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This chapter gives an insight into 16S rRNA genomics and other methods and platforms used in 

this thesis. 

2.1 16S rRNA genome 

 

Fig 2.1 Structure of 16S rRNA and hypervariable regions [59] 
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 Bacterial ribosome also called as 70S ribosome is composed of two subunits namely 50S 

large subunit and 30S small subunit. 16S RNA is a part of 30S (S for Svedberg unit) small subunit, 

while 23S RNA and 5S RNA are a part of 50S large subunit. Sequence analysis of 16S rRNA or 

23S rRNA assists in understanding the phylogenies of prokaryotic bacteria. 16S rRNA, shown in 

Fig 2.1 is comparatively short with only 1,542 nucleotides and is easy and cheap to sequence; 

therefore, is chosen to study the hand bacterial samples in this thesis.  

 

2.2 Hyper Variable region V3 

 While most of the bacterial 16S rRNA is conserved, the regions where sequences exhibit 

significant diversity among different bacteria is divided into 9 hypervariable regions (V1-V9, see 

Fig 2.2) and are used for taxonomic classification of bacteria. Sequences in a hypervariable region 

are specific to species, offering useful targets for numerous scientific investigations and diagnostic 

tests. A single region cannot distinguish among all bacteria, because of different degrees of 

sequence diversity; therefore, hypervariable regions are compared and combined depending on the 

relative advantage of each region for specific goals [60]. Comparing hypervariable regions of 16S 

rRNA gene sequences assists in distinguishing various organisms at genus level across all major 

phyla of bacteria. Classification is being done further than the genus level, what we now call the 

species and subspecies level. Species that are identified and clustered together at various 

taxonomic levels shown in Fig 2.3 based on sequence similarity are referred to as Operational 

Taxonomic Unit (OTUs). Though sequencing the entire 1500-bp 16S rRNA is necessary to 

distinguish between particular taxa or describing a new species, it is not required at clinical level, 

as the initial 500-bp sequence exhibits more diversity and is sufficient for differentiating and 

identifying taxa [61]. Association between species that are classified from regions of length 500-
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bp and 1500-bp were similar for more than 100 organisms, encouraging the use of shorter sequence 

[62]. 

 

Fig 2.2 Hypervariable regions in 16S rRNA [63] 

 

 

Fig 2.3 Phylum levels of classification 

V2 and V3 regions of 16S rRNA produced relatively better results than the other regions 

in distinguishing 110 bacterial species up to genus-level, except for a few closely associated 

Enterobacteriaceae, encouraging the use of short V2 and V3 regions in phylogenetic and taxonomy 

studies [60]. Since the V3 region with 64-bp length is shorter than V2(105-bp), it is easier and 
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cheaper to sequence and therefore, chosen as the target in this research. 

 

2.3 DNA Sequencing 

 Determining the sequence of nucleotide bases (Adenine, Cytosine, Guanine and 

Thymine) within a DNA strand is called DNA sequencing. The first ever DNA sequencing took 

place in the 1970’s and many sequencing techniques emerged thereafter, spreading over 4 

generations [DNA chain-terminating inhibitors]. Sequencing an entire genome is a complex task, 

where the entire DNA was required to be divided into various small segments to be sequenced. 

However, development of modern sequencing technologies made it faster and cheaper. The 

evolution from first generation to second generation DNA sequencing was very significant, where 

output increased to more than 5 orders of scale and cost falling to more than 5 orders of scale [64]. 

Sanger Sequencing can sequence up to 1000 bp for each run, and 384 sequences can be run in 

parallel in an automatic sequencer with a throughput of 80–100 kb per hour [65]. 

 In 1985, reading a single base cost $10. By 2005, the cost has fallen 10,000 lower. Second 

generation sequencing or the Next Generation Sequencing (NGS) platforms developed in the early 

2000’s can produce millions or even billions of reads in parallel. They also amplified the use of 

statistical methods and bioinformatics tools to analyze and manage the vast data generated. A few 

examples where NGS techniques are applied are, whole genome resequencing, targeted 

resequencing, de novo sequencing, gene expression analysis with whole transcriptome analysis, 

small RNA sequencing, methylation analysis, ChiP sequencing and nuclease fragmentation and 

sequencing [65] 

 

Illumina sequencing: 
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Fig 2.4 Illumina MiSeq Sequencer [66] 

Illumina sequencing is a Next Generation Sequencing technology that was first introduced 

by Bruno Canard and Simon Sarfati at the Pasteur Institute in Paris, later developed by Shankar 

Balasubramanian and David Clenerman and then acquired by illumina [67]. Illumina Next 

Generation sequencing technology basically works through four stages, namely Sample 

preparation, Cluster generation, Sequencing, and Data analyzing. Once the DNA is extracted from 

the samples, it is purified by removing all the unwanted debris before being cut into smaller pieces. 

These tiny fragments of DNA are given adapters on either sides and further introduced with 

sequencing binding cites, indices and regions complementary to flow cell oligos [68] .  

Clustering is the isothermal amplification of these altered DNA fragments and it takes place 

in a glass slide with lanes called flow cell. Two types of oligonucleotides (short, synthetic pieces 

of DNA) are attached along the surface of the flow cell. DNA fragments are loaded onto the flow 

cell and hybridization takes place as one of the two oligos is the complementary sequence to the 

adapter region of one of the DNA fragments. Complimentary sequence of the hybridized DNA 
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fragment is synthesized with the help of polymerases, and the original DNA strand is denatured 

and washed away. Now the strand is clonally amplified by bridge amplification where the strand 

bends over and the adapter region of the strand is hybridized to the second type of oligo. 

Polymerases generate a complementary strand forming a double stranded bridge which denatures 

into two separate DNA strands on the surface of the flow cell (forward and reverse) [68] as shown 

in Fig 2.5. The process is repeated simultaneously for millions of clusters causing clonal 

amplification of all the DNA strands. Then all the reverse strands are washed away, and 3-prime 

ends are blocked to avoid unwanted priming. The forward strands are sequenced in cycles with the 

help of the first sequencing primer where a nucleotide with a fluorescent tag is added to the 

growing chain according to the nucleotide in the template. Then the sequence reads are excited by 

a light source and the wavelengths of the fluorescent signals emitted by the tags on the nucleotides 

are noted to determine the nucleotides. In a given cluster, all the identical DNA strands are read 

simultaneously.  Millions of clusters are sequenced in a parallel process.  Then the indexed primers 

are hybridized to the template to generate index 1 read which would be useful to separate the 

sequences according to the sample during data analysis. Then the 3-prime ends are deprotected 

and the strand bends over to hybridize with second oligo. Index 2 reads are generated in the same 

manner and are extended by polymerases to form a double stranded bridge. The bridge denatures, 

and the forward strands are washed away. Then the reverse reads are sequenced in the same way. 

The process is repeated until the full DNA molecule is sequenced. Through massive parallel 

sequencing, thousands of reads throughout the whole genome can be sequenced at once. 
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Fig 2.5 Illumina DNA Sequencing [68] 
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BaseSpace: 

 

Fig 2.6 How data is stored and analyzed in BaseSpace [69] 

Illumina in addition to sequencing the data, also provides the platform to analyze and share 

the sequenced data. BaseSpace is the built-in genomic computing platform in all the Next 

Generation Sequencing instruments of NextSeq, MiSeq (see Fig 2.4) and HiSeq. Illumina offers 

BaseSpace in both online cloud and offsite set-ups. We chose the online cloud for this work to 

make it easy for the transfer of the data between biology and genomic departments. 

 The MiSeq instrument converts all the data after sequencing into base call files (.bcl file) 

and then sends them to the allotted user space on the BaseSpace cloud. Now the .bcl file containing 
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all the sequenced data requires to be sorted into individual sample files to identify and classify the 

sequenced data. Therefore, BaseSpace converts and demultiples the data into individual sample 

FASTq files (Fig 2.6). In this research, one sample *. FASTq file represents the bacteria either 

from right or left hand of an individual. FASTq format is a text-based format that stores both the 

genomic sequence (nucleotides) and its respective quality score. A single ASCII character is used 

to encode both the nucleotide and its quality to make it brief. A FASTq file shown in Fig 2.7 

usually has four lines per sequence 

Line 1: It starts with ‘@’ character and is followed by sequence identifier and an optional 

description. 

Line 2: Raw sequence. 

Line 3: It has a ‘+’ sign and sometimes followed by optional sequence identifier or any other 

description. 

Line 4: It has the same number of characters as in line 2 that represent the quality of base calls.  

 

Fig 2.7 FASTq file format 

 

 BaseSpace has a metagenomics workflow which is used in the taxonomic classification of 

16S rRNA sequences. Once the data is converted into FASTQ files, BaseSpace compares the 

sequence reads against the GreenGenes reference database and classify them to the species [69]. 

The algorithm adopted in taxonomic classification is a Ribosomal Database Project (RDP) naïve 

Bayesian algorithm [70]. Once the sequences are compared against GreenGenes reference 

sequences, the reads for various taxonomy levels classified for every sequence is recorded.  
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2.4 QIIME 

QIIME (Quantitative Insights into Microbial Ecology) is an open-source bioinformatics 

pipeline designed to perform microbiome analysis on raw DNA sequence data [71]. QIIME helps 

the users to generate graphical and statistical analysis from raw sequencing data generated from 

Illumina or other platforms suitable for publications. QIIME does various microbiome analysis 

through python (.py) scripts. Tasks that can be accomplished by QIIME include: 

• Demultiplexing and quality filtering. 

• OTU picking. 

• Taxonomic assignment and phylogenetic reconstruction. 

• Diversity analyses and visualizations 

 Raw sequences imported from outside sources are denoised to by either detecting and 

correcting sequences or truncating low quality sequence reads. Unique sequence features and their 

frequencies in each sample are identified using any OTU picking techniques available. OTUs are 

later assigned taxonomy with the help of multiple classifiers and reference databases. Resultant 

taxonomic assignment files can be used to build phylogenetic tree and perform several diversity 

analyses. Fig 2.8 is an example of Taxonomic assignment text file from QIIME listing the sequence 

names, taxonomy and their quality score   
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Fig 2.8 Screenshot of taxonomy assignment text file from QIIME 

 

2.5 Kullback-Leibler Divergence 

 The Kullback-Leibler Divergence was introduced in 1951 by Solomon Kullback and 

Richard Leibler to measure how one probability distribution diverges from a second probability 

distribution [72]. In simple words, a Kullback-Leibler divergence of 0 means that the two 

distributions are more similar, and their similarity decreases as the divergence values increases. 

The Kullback-Leibler Divergence between two distributions B and A denoted by 𝐷𝐾𝐿(𝐴||𝐵) is 

defined by the equation [73] 

𝐷𝐾𝐿(𝐴||𝐵) = ∑ 𝐴(𝑖)𝑙𝑜𝑔
𝐴(𝑖)

𝐵(𝑖)𝑖    Equation 2.1 
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In other words, Kullback-Leibler Divergence from B to A is the expectation of the logarithmic 

difference between the distributions A and B, while the expectation is taken from the distribution 

of A. Kullback–Leibler divergence is defined only if 𝐵(𝑖) = 0 implies 𝐴(𝑖) = 0 for all ‘i’ 

(absolute continuity). If 𝐴(𝑖) = 0, the contribution of the ith term is interpreted as zero because 

lim
𝑥→𝑜

𝑥𝑙𝑜𝑔(𝑥) = 0. 

 

Properties of Kullback-Leibler Divergence are  [72][74]: 

1. Kullback-Leibler Divergence is always non-negative  

𝐷𝐾𝐿(𝐴||𝐵) ≥ 0    Equation 2.2 

2. Kullback-Leibler Divergence for independent distributions is additive.  

𝐷𝐾𝐿(𝐴||𝐵) = 𝐷𝐾𝐿(𝐴1||𝐵1) + 𝐷𝐾𝐿(𝐴2||𝐵2)  Equation 2.3 

3.   Kullback- Leibler divergence is non-symmetric [problem of KLD] 

𝐷𝐾𝐿(𝐴||𝐵) ≠ 𝐷𝐾𝐿(𝐵||𝐴)    Equation 2.4 

Therefore, another form of divergence, called Jenson-Shannon divergence, is obtained by 

averaging the two unequal KLDs to get a symmetric Kullback-Leibler Divergence which can be 

called the distance between the two distributions. 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴,𝐵 = 𝐷𝐽𝑆 = 1
2⁄ [𝐷𝐾𝐿(𝐴||𝐶) + 𝐷𝐾𝐿(𝐵||𝐶) 

Equation 2.5 

𝐶 = 1
2⁄ (𝐴 + 𝐵)    Equation 2.6 
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2.6 Principal Coordinate Analysis (PCoA) 

 Principal Coordinate Analysis is a type of multidimensional scaling to visualize the 

dissimilarities between individual items of a data set. PCoA is different from Principal Component 

Analysis (PCA), which is a statistical procedure that analyzes the collection of differences between 

observations by converting possibly correlated variables into linearly uncorrelated variables, while 

PCoA analyzes the dissimilarities between observations [75]. PCoA takes a distance matrix 

containing dissimilarities between pairs of items and gives a coordinate matrix with the positions 

of the items. In Fig 2.9, distance matrix (a) with 4 data points is given as the input for PCoA and 

resultant Coordinate matrix (b) with coordinates of 4 data points is used to plot PC1 vs PC2 (c). 

 

Fig 2.9 Illustration of Principal Coordinate Analysis 

 

2.7 Unsupervised learning on OTU distribution and their k-

mer frequencies 

A union of 702 OTUs (denoted as 𝑔) identified by QIIME from 69 samples (denoted as 𝑛) 

are stored in taxonomy assignment files. Frequencies of 𝑔 OTUs {𝑄1
1−𝑔

, 𝑄2
1−𝑔

, …𝑄𝑛
1−𝑔

} for n 
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samples {𝑆1, 𝑆2 …𝑆𝑛} are calculated. K-mer frequencies {𝑃1
1−𝑔(𝑧), 𝑃2

1−𝑔(𝑧) ,… 𝑃𝑛
1−𝑔(𝑧)}  were 

derived by calculating the frequencies of A, C, G and T for k-1 where  𝑧 = {𝐴, 𝐶, 𝐺 & 𝑇}, the 

frequencies of AA, AC, AG, … TT for k-2 where 𝑧 = {𝐴𝐴, 𝐴𝐶, 𝐴𝐺,…  𝑇𝑇} and the frequencies of 

AAA, AAC, AAG, … TTT for k-3 where 𝑧 = {𝐴𝐴𝐴, 𝐴𝐴𝐶, 𝐴𝐴𝐺,…  𝑇𝑇𝑇}. Multiple ways were 

adopted to perform unsupervised and supervised learning on the OTU distribution and their k-mer 

frequencies. 

 

2.7.1 KLD analysis of OTU frequencies in each sample: 

OTU frequencies {𝑄1
1−𝑔

, 𝑄2
1−𝑔

, …𝑄𝑛
1−𝑔

} were used to calculate the Kullback-Leibler 

Divergence D𝐾𝐿𝐷 between two samples using Eq. 2.6. Symmetric distance (dij) between every two 

samples of 69 samples was calculated by taking the average of KLD at respective OTUs using Eq. 

2.7. Resultant distance matrix was normalized and used to build a phylogenetic tree and perform 

Principal Coordinate Analysis. Depending on the geographical location of different ethnic groups, 

a reference distance matrix was created in such a way, that its resultant phylogenetic tree 

accommodates samples of one population group at a single node. This reference phylogenetic tree 

was used to compare with resultant trees, and dissimilarity between reference and resultant 

distance matrices was considered to measure the performance. 

 

𝐷𝐾𝐿𝐷
𝑜𝑡𝑢 (𝑆𝑖||𝑆𝑗) = ∑ 𝑄𝑖

𝑜𝑙𝑜𝑔
𝑄𝑖

𝑜

𝑄𝑗
𝑜

𝑔
𝑜=1    Equation 2.6 

𝑑𝑖𝑗
𝑜𝑡𝑢 =

1

2
[𝐷𝐾𝐿𝐷

𝑜𝑡𝑢 (𝑆𝑖||𝑆𝑗) + 𝐷𝐾𝐿𝐷
𝑜𝑡𝑢 (𝑆𝑗||𝑆𝑖)]   Equation 2.7 

where i=1,2...n, j=1,2...n 
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2.7.2 KLD analysis of unweighted k-mer frequencies: 

 k-mer frequencies {𝑃1
1−𝑔(𝑧),𝑃2

1−𝑔(𝑧) ,…𝑃𝑛
1−𝑔(𝑧)}   of genus level OTU sequences were 

calculated using MATLAB commands. Average of k-mer frequencies over 𝑔 number of OTU 

sequences was considered as the unweighted frequency sign for each sample. For example, for 

sample ‘n’, in case of k-1, k-mer frequencies 

𝑃𝑛 =

[
 
 
 
 𝑃𝑛

1(𝐴) 𝑃𝑛
1(𝐶) 𝑃𝑛

1(𝐺) 𝑃𝑛
1(𝑇)

 𝑃𝑛
2(𝐴) 𝑃𝑛

2(𝐶) 𝑃𝑛
2(𝐺) 𝑃𝑛

2(𝑇)
 ⋮ ⋮ ⋮ ⋮

 𝑃𝑛
𝑔(𝐴) 𝑃𝑛

𝑔(𝐶) 𝑃𝑛
𝑔(𝐺) 𝑃𝑛

𝑔(𝑇)]
 
 
 

  Equation 2.8 

𝑃𝑛
𝑢𝑤 =

1

𝑔
[∑ 𝑃𝑛

𝑜(𝐴)

𝑔

𝑜=1

∑ 𝑃𝑛
𝑜(𝐶)

𝑔

𝑜=1

∑ 𝑃𝑛
𝑜(𝐺)

𝑔

𝑜=1

∑ 𝑃𝑛
𝑜(𝑇)

𝑔

𝑜=1

] 

 …Equation 2.9 

where ‘uw’ denotes unweighted 

A distance matrix was built by calculating the symmetric KLD distance between the 𝑃𝑛
𝑢𝑛𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑

 

of every two samples using equations 2.10 and 2.11, and phylogenetic tree and PCoA plots were 

generated from the matrix. 

𝐷𝐾𝐿𝐷
𝑢𝑤 (𝑆𝑖||𝑆𝑗) = ∑ 𝑃𝑖

𝑢𝑤(𝑧)𝑙𝑜𝑔
𝑃𝑖

𝑢𝑤(𝑧)

𝑃𝑗
𝑢𝑤(𝑧)𝑧    Equation 2.10 

𝑑𝑖𝑗
𝑢𝑤 =

1

2
[𝐷𝐾𝐿𝐷

𝑢𝑤 (𝑆𝑖||𝑆𝑗) + 𝐷𝐾𝐿𝐷
𝑢𝑤 (𝑆𝑗||𝑆𝑖)]  Equation 2.11 

where i=1,2...n, j=1,2...n 

 

 

2.7.3 KLD analysis over weighted k-mer frequencies: 

 Frequencies of Genus level OTU sequences {𝑄1
1−𝑔

, 𝑄2
1−𝑔

, …𝑄𝑛
1−𝑔

}, and their respective k-

mer frequency values {𝑃1
1−𝑔(𝑧), 𝑃2

1−𝑔(𝑧) ,… 𝑃𝑛
1−𝑔(𝑧)} were combined to get the weighted 

Eq. (4.4) 
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frequency sign for each sample, which were used to calculate the symmetric pair-wise distances 

using the KLD. For example, for sample ‘n’, in case of k=1, 

K-mer frequency values for 𝑔 OTUs  𝑃𝑛 =

[
 
 
 
 𝑃𝑛

1(𝐴) 𝑃𝑛
1(𝐶) 𝑃𝑛

1(𝐺) 𝑃𝑛
1(𝑇)

 𝑃𝑛
2(𝐴) 𝑃𝑛

2(𝐶) 𝑃𝑛
2(𝐺) 𝑃𝑛

2(𝑇)
 ⋮ ⋮ ⋮ ⋮

 𝑃𝑛
𝑔(𝐴) 𝑃𝑛

𝑔(𝐶) 𝑃𝑛
𝑔(𝐺) 𝑃𝑛

𝑔(𝑇)]
 
 
 

 

Equation 2.12 

Frequencies of 𝑔 OTUs 𝑄𝑛 = [𝑄𝑛
1 … 𝑄𝑛

𝑔]  Equation 2.13 

 

𝑄𝑛 × 𝑃𝑛 =

[
 
 
 

 𝑄𝑛
1 × 𝑃𝑛

1(𝐴) 𝑄𝑛
1 × 𝑃𝑛

1(𝐶) 𝑄𝑛
1 × 𝑃𝑛

1(𝐺) 𝑄𝑛
1 × 𝑃𝑛

1(𝑇)

 𝑄𝑛
2 × 𝑃𝑛

2(𝐴) 𝑄𝑛
2 × 𝑃𝑛

2(𝐶) 𝑄𝑛
2 × 𝑃𝑛

2(𝐺) 𝑄𝑛
2 × 𝑃𝑛

2(𝑇)
 ⋮ ⋮ ⋮ ⋮

 𝑄𝑛
𝑔

× 𝑃𝑛
𝑔(𝐴) 𝑄𝑛

𝑔
× 𝑃𝑛

𝑔(𝐶) 𝑄𝑛
𝑔

× 𝑃𝑛
𝑔(𝐺) 𝑄𝑛

𝑔
× 𝑃𝑛

𝑔(𝑇)]
 
 
 

 

…Equation 2.14 

𝑃𝑛
𝑤 =

1

𝑔
[∑ 𝑄𝑛

𝑜 × 𝑃𝑛
𝑜(𝐴)

𝑔

𝑜=1

∑ 𝑄𝑛
𝑜 × 𝑃𝑛

𝑜(𝐶)

𝑔

𝑜=1

∑ 𝑄𝑛
𝑜 × 𝑃𝑛

𝑜(𝐺)

𝑔

𝑜=1

∑ 𝑄𝑛
𝑜 × 𝑃𝑛

𝑜(𝑇)

𝑔

𝑜=1

] 

…Equation 2.15 

where ‘w’ denotes weighted 

𝐷𝐾𝐿𝐷
𝑤 (𝑆𝑖||𝑆𝑗) = ∑ 𝑃𝑖

𝑤(𝑧)𝑙𝑜𝑔
𝑃𝑖

𝑤(𝑧)

𝑃𝑗
𝑤(𝑧)𝑧    Equation 2.16 

𝑑𝑖𝑗
𝑤 =

1

2
[𝐷𝐾𝐿𝐷

𝑤 (𝑆𝑖||𝑆𝑗) + 𝐷𝐾𝐿𝐷
𝑤 (𝑆𝑗||𝑆𝑖)]  Equation 2.17 

where i=1,2...n, j=1,2...n 

 

2.8 Structure based mapping of 16S rRNA V3 region  

Hypervariable region V3, which is 65 nucleotides long (position 433 to 497) was split into 

its RNA secondary structure elements strand, stem, bulge, internal loop and loop (see Fig 2.10). 

The short chain of 4 nucleotides in the beginning with no bonds was termed as strand followed by 

a series of bonded nucleotides, which was labelled as stem. The single unbonded nucleotides that 
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occur randomly along the stem were named as bulge, where as the sequence of unbonded 

nucleotides along the stem were named as internal loops. The remaining sequence of nucleotides 

acting as a bridge between a pair of bonded nucleotides was labelled as loop. The pair of 

nucleotides that share a bond in the stem were together considered as a single element, for example 

nucleotide 5 and 65 together were considered as single element 5 and therefore 65 nucleotides 

were mapped into 47 elements as shown in Fig 2.11.  

 

Fig 2.10 Nucleotide bond structure in 16S rRNA V3 region 

 

  

 

Fig 2.11 Mapping of 65nt of 16S rRNA into 47 elements  

 

 The mapped sequences result in 20 (m) different nucleotide possibilities like A, C, G, T, 

AA, AC, AG, ...TT; therefore, for m=20, the number of k-mers in mapped OTU sequences are 

z=mk=20 for k=1 and z=mk=202=400 for k=2. For example, for sample ‘n’, in case of k=1, 
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K-mer frequency values for mapped OTU sequences  𝑃𝑛 =

[
 
 
 
 𝑃𝑛

1(1) 𝑃𝑛
1(2) … … 𝑃𝑛

1(20)

 𝑃𝑛
2(1) 𝑃𝑛

2(2) … … 𝑃𝑛
2(20)

 ⋮ ⋮ ⋮ ⋮
 𝑃𝑛

𝑔(1) 𝑃𝑛
𝑔(2) … … 𝑃𝑛

𝑔(20)]
 
 
 

 

…Equation 2.18 

Frequencies of 𝑔 OTUs 𝑄𝑛 = [𝑄𝑛
1 … 𝑄𝑛

𝑔]   Equation 2.19 

 

𝑄𝑛 × 𝑃𝑛 =

[
 
 
 
 𝑄𝑛

1 × 𝑃𝑛
1(1) 𝑄𝑛

1 × 𝑃𝑛
1(2) … … 𝑄𝑛

1 × 𝑃𝑛
1(20)

 𝑄𝑛
2 × 𝑃𝑛

2(1) 𝑄𝑛
2 × 𝑃𝑛

2(2) … … 𝑄𝑛
2 × 𝑃𝑛

2(20)
 ⋮ ⋮ ⋮ ⋮

 𝑄𝑛
𝑔

× 𝑃𝑛
𝑔(1) 𝑄𝑛

𝑔
× 𝑃𝑛

𝑔(2) … … 𝑄𝑛
𝑔

× 𝑃𝑛
𝑔(𝑇)]

 
 
 

  Equation 2.20 

 

𝑃𝑛
𝑢𝑤 =

1

𝑔
[∑ 𝑃𝑛

𝑜(1)𝑔
𝑜=1 ∑ 𝑃𝑛

𝑜(2)𝑔
𝑜=1

… … ∑ 𝑃𝑛
𝑜(20)𝑔

𝑜=1 ] Equation 2.21 

 

𝑃𝑛
𝑤 =

1

𝑔
[∑ 𝑄𝑛

𝑜 × 𝑃𝑛
𝑜(1)

𝑔

𝑜=1

∑ 𝑄𝑛
𝑜 × 𝑃𝑛

𝑜(2)

𝑔

𝑜=1

… … ∑ 𝑄𝑛
𝑜 × 𝑃𝑛

𝑜(20)

𝑔

𝑜=1

] 

…Equation 2.22 

In case of mapped sequences, k-mer analysis is stopped with k=2 because k=3 resulted in 

z=mk=203=8000 k-mers where the majority of the k-mers could not be found in the mapped 

sequences and the execution was time-consuming. 

 

2.9 K-means Clustering 

 K-means clustering is a technique used to compress large dataset with ‘n’ number of 

observations into ‘k’ mutually exclusive clusters, where each observation in a given cluster is more 

similar to the observations in the same cluster than they are to the observations in other clusters. 

For example, if X1, X2, X3…Xn are n number of observations, k-means clustering divides the n 

observations into k ( n) clusters S1, S2…Sk by applying the formula 
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argmin
𝑆

∑ ∑ ‖𝑋 − 𝜇𝑖‖
2 = argmin

𝑆
∑ |𝑆𝑖|

𝑘
𝑖=1𝑥∈𝑆𝑖

𝑘
𝑖=1 𝑉𝑎𝑟 𝑆𝑖 Equation 2.23 

 
Fig 2.12 Mutually exclusive clusters in k-means clustering 

 

 An observation is placed into a cluster with the nearest mean, in an effort to minimize the 

variance within a cluster. Fig 2.12 shows an example clustering. The chief limitation of k-means 

clustering is its model, where the number of clusters is picked by the user. In order to determine 

the appropriate number of clusters, multiple diagnostic checks and comparisons are required to be 

made.  

Silhouette: 

 Silhouette is a method to validate the number of clusters in a given data set [76]. It is a 

measure of how similar the observation is to its own cluster, and how different it is from other 

clusters. Silhouette values provide a concise illustration of how well an observation is placed in a 

certain cluster. Silhouette values range from -1 to +1, where higher number indicates higher 

similarity with its own cluster and higher dissimilarity with other clusters. Therefore, a greater 
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number of higher silhouette values affirm proper clustering. 

 

2.10 Ensemble Learning 

 Ensemble learning is a machine learning prototype that uses several learning algorithms to 

obtain high-quality predictive performance. Some of the algorithms can be applied only for 

classification ensembles, and some algorithms apply only for regression ensembles. Different from 

other machine learning methods where one hypothesis is learned from training the data, ensemble 

learning tries to construct multiple hypotheses and use them to predict the class. In order to avoid 

over-fitting from training with multiple models, a bagging technique is applied while training the 

data. For this research, MATLAB R2017b was used to train an ensemble for classification with a 

bootstrap aggregation (bagging) method and a decision tree learner. 

Bootstrap Aggregation: 

 Bootstrap aggregation, referred to as bagging, is one of the ensemble learning algorithms 

that was proposed by Leo Breiman in 1994 to improve classification by combining classifications 

of randomly generated training sets from within the given training set [77]. Bootstrap aggregation 

is aimed to improve the stability and accuracy of the learner models. Bootstrap aggregation is a 

model averaging approach, that reduces variance and assist in avoiding overfitting of the model. 

Bagging is applied usually on decision tree models though it can be used with any other model. 

Leave one out cross validation: 

  Leave-one-out cross validation (Loo-CV) is a K-fold cross validation technique, where K 

is equal to the number of data points in the given set. Therefore, the model is trained N different 
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times on all the data except for one data point and prediction is done on that left-out data point. 

Then the average accuracy is calculated to evaluate the model. Leave-one-out is also a special case 

of Leave-p-out cross validation where p=1. Unlike Leave-p-out cross validation, Loo-CV doesn’t 

take much computational time since 𝐶1
𝑁 = 1 

Confusion matrix: 

 Confusion matrix or error matrix is a table that is used to evaluate the performance of a 

classification model. In confusion matrices presented in this thesis, rows represent the actual class 

i.e. true population group, while the columns represent the predicted class. The values in the 

diagonal of confusion matrix are the accurately predicted samples and the sum of all columns in a 

row gives the total number of samples belonging to the population group represented by that 

particular row. Table 2.1 is a model of confusion matrix with 3 classes. For example, in pigeon 

class, 4 samples out of 7 samples (4+2+1) were predicted accurately as pigeon, while 2 samples 

were predicted as parrot and 1 sample was predicted as peacock. 

Table 2.1 Example of Confusion matrix with 3 classes 

  Predicted class 

  Pigeon Parrot Peacock 

A
ct

u
al

 c
la

ss
 

Pigeon 4 2 1 

Parrot 1 3 0 

Peacock 0 0 5 
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 Data Extraction 

and organization 
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Chapter 3 describes the procedure of collecting the samples and extracting the data from the 

samples 

3.1 Overview 

Data collection was done under the name Human DNA and Facial features with approval 

from the Institutional Review Board (IRB #H-23693). The data collection was funded by US 

Department of Justice/ Office of Justice programs/National Institute of Justice. Data collection 

included taking the Human genomic DNA samples and Hand swab samples. The hand bacterial 

project mentioned in this thesis is a part of a larger research project with two significant goals. One 

aim is to study the Human genomic DNA and encode facial features like eye color, hair color, 

nose, ear lobe et cetera. The other is to analyze the bacterial communities found on human hands 

and determine if they can be used to differentiate people from different population groups. Blood 

samples, hand swabs, facial images and medical histories of around 200 individuals both male and 

female from diverse population groups and age groups were collected over a time period of three 

months for the project. 

 

3.2 Collection Process 

Data collection took place in September 2012 and lasted for approximately three months. 

Participants were approached through email they provided for future contact in any previous 

studies they partook and were given a website and contact number to make a reservation with the 

collection team. The collection was carried out in West Virginia University’s Health Sciences 

Center. This location is connected to Ruby Memorial Hospital, which is the largest medical 

complex in the state of West Virginia, so that any medical assistance needed during the sample 

collection could be provided with ease. Before taking the samples, the participant was asked to go 
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through a consent form and was explained the procedure of data collection by a co-investigator. 

Then, the participant was registered into a database to record the details about their physical traits 

and was assigned with a random number in the demographics to maintain confidentiality. The 

participant was also asked to fill out the forms with their medical history, handedness and hand 

washing. 

 Firstly, 2-D facial images were collected with a commercial digital camera and a gray 

backdrop. The images were taken form five different angles (-90, 45,0 i.e. front pose ,45,90) 

with no facial expressions. Then in a connecting room, hand swab samples were collected. An end 

of a cotton swab is sterilized prior to use by being wrapped in an aluminum foil and autoclaved. It 

is then dipped in a double distilled water solution with 0.15 M NACl and 0.1% Polysorbate 20 

(aka Tween 20) as it works as a non-toxic cleaner and helps in lifting the bacteria from the skin 

surface [78]. The cotton swab was then used to collect the hand bacterial sample by swabbing the 

entire palm by rotating the cotton tip. The head of the cotton was placed in a 2ml bead solution 

tube of an Ultraclean Plan DNA Isolation kit (MO BIO laboratories Carlsbad, CA, USA) and cut 

with a sterilized scissors. Then, the procedure was repeated for the other hand using a different 

cotton swab. The tubes were then stored at -80C until DNA extraction. Once both bacterial 

samples and blood samples were collected, participants were given $40 after the data collection. 

 

3.3 Demographics 

 The number of individuals that took part in the collection was 255. Though it was initially 

planned to have 200 individuals for the study, blood samples from around 30 people couldn’t be 

collected because either their veins were small or were not close enough to the skin surface to be 

found. The number of individuals that participated in the hand bacterial collection was 51. The 
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following charts provide a detailed break-down of the demographics regarding the 51-people 

considered for the hand bacterial study [22]. 

 

Fig 3.1 Population group of the participants in the hand bacterial sample collection 
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Fig 3.2 Population group and gender of the participants in the hand bacterial sample 

collection 

 

 

 

 

Fig 3.3 Age groups of the participants in the hand bacterial sample collection 
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Fig 3.4 Left-hand and right-hand sample count of the participants in the hand bacterial 

sample collection 

 

3.4. DNA Isolation and V3 region amplification 

 DNA was first isolated from the hand swab samples before PCR Amplification. 

16S region of the bacterial DNA was amplified using the primers E8F and E1541R (see Fig 3.5 

and Table 3.1) [79]. PCR amplification was repeated to amplify the V3 hypervariable region with 

primers 341F and modified 518R synthesized by Eurofins Genomics [80] [81]. Sequences obtained 

from amplification of V3 region were sent to Illumina’s BaseSpace next-generation sequencing 

cloud, for automatic analysis and storage [82]. Sequence reads of length 151 and their quality 

scores for each sample were written to two FASTQ format files; one file for the forward run and 

the other for the reverse run.  
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Fig 3.5 Work flow of 16S rRNA gene extraction from skin bacteria before DNA sequencing 

 

Table 3.1 primers used the Amplification of 16S rRNA and V3 hypervariable region 

 

 

3.5 Classification and organization of raw sequence data: 

 Forward and Reverse Fastq files from Illumina’s sequencing cloud were joined into a single 

fastq file using join_paired_ends.py script in QIIME. Joined fastq files were then converted to 

fasta files. OTUs were picked by clustering sequences using pick_open_reference_otu.py script 

with default otu picking method and reference sequences. Representative sequences for OTUs 

Forward and Reverse Primer list 

16S rRNA 

E8F: AGAGTTTGATCCTGGCTCAG 

E1541R: AAGGAGGTGATCCANCCRCA 

V3 region 

341F: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGACG 

CTCTTCCGATCTCCTACGGAGGCAGCAG 

518R: 

CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCAGACGTG 

TGCTCTTCCGATCTATTACCGCGGCTGCTGG 
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were picked using pick_rep_set.py script where a single sequence is assigned for every OTU. 

Representative sequences were classified using RDP (Ribosomal Database Project) classifier with 

GreenGenes database by applying assign_taxonomy.py script. Output from assign_taxonomy.py 

is given in the form of text files with sequence identifiers and their assigned taxonomy. Frequencies 

of OTUs were calculated from these resultant text files using MATLAB commands. 

Representative sequences were aligned with align_seqs.py script. Nucleotides in 65 positions of 

V3 hypervariable region between positions 2095 and 2159 of aligned sequences fasta file were 

separated to apply multiple Bioinformatics’ techniques explained in chapter 2. Each sample is 

named after its gender, hand, n  and date of birth.  For example, F_L_MidE_55 represents Female, 

Left hand, Middle eastern and born in 1955. Abbreviations used for all the population groups 

presented in this thesis are listed in the following Table 3.2 

Table 3.2 List of Population groups and their abbreviations 

Population group Abbreviation 

African Af 

Turkish Tur 

Chinese Chin 

Hispanic Hisp 

Middle Eastern MidE 

Caucasian Ca 

Asian Asian 

Asian Indian AsInd 

African American AfAm 
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 Bioinformatics’ 

Analysis 
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Chapter 4 illustrates results from application of different statistical and bioinformatics’ techniques, 

that were explained in chapter 2. 

 

4.1 Taxonomic classification of Raw sequences 

 V3 hypervariable region of 16S rRNA is amplified from isolated DNA and sequenced 

using Illumina MiSeq sequencer. Sequences are then classified into OTUs using RDP (Ribosomal 

Database Project) classifier and identified with GreenGenese reference database. Representative 

consensus sequences for genus-level OTUs were separated from each sample to apply various 

bioinformatics and statistical methods. Out of 104 samples, only 69 samples had both taxonomic 

and sequence data and rest of the samples could not be used due to lack of enough information. 

Demographics of 69 samples that were used in this study are illustrated in the below graphs Fig 

4.1 and Fig 4.2. Nucleotides at 65 positions of 16S rRNA V3 hypervariable region of genus level 

OTUs, which were 702 from 69 samples were separated, and their A, C, G and T frequency profiles 

(K-mers) are calculated.  

 

 

African
6%

Turkish
6%

Chinese
6%

Hispanic
6%

Middle 
Eastern

13%

Caucasia
n

15%

Asian
14%

Asian 
Indian

17%

African 
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17%
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Fig 4.1 Percentage of samples belonging to each population group    

 

Fig 4.2 Number of left and right-hand samples in every population group 

 

4.2 Verification of K-mer signatures for known OTUs  

 K-mer frequencies of nucleotides of genus-level OTU sequences for k=1, 2 and 3 were 

verified by comparing their graphs from two different samples. Same OTU from two different 

samples had similar patterns confirming that k-mer profiles can be used as a feature to compare 

and cluster different samples. Figures 4.3, 4.4 and 4.5 demonstrate k-mer frequencies illustrating 

similar patterns for the genus level OTU Staphylococcus from 4 different samples for k-1, k-2 and 

k-3 respectively.  
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Fig 4.3 K-mer (k=1) frequencies in genus level OTU Staphylococcus from 4 different 

samples  

 

 

  

  

Fig 4.4 K-mer (k=2) frequencies in genus level OTU Staphylococcus from 4 different 

samples  
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Fig 4.5 K-mer (k=3) frequencies in genus level OTU Staphylococcus from 4 different 

samples  

 

4.3 Unsupervised machine learning of population groups 

using OTU and k-mer frequencies in hand bacterial samples 

4.3.1 KLD analysis of OTU frequencies: 

Like explained in section 2.7.1, OTU frequencies were used to calculate the Kullback-Leibler 

Divergence D𝐾𝐿𝐷 between two samples. Symmetric distance (dij) between every two samples of 

69 samples was calculated by taking the average of KLD at respective OTUs. Resultant distance 

matrix was normalized and used to built phylogenetic tree and perform Principal Coordinate 

Analysis. Depending on the geographical location of different population groups, a reference 

distance matrix was made in such a way, that the resulting phylogenetic tree accommodates 

samples of one population group at a single node. Fig 4.7 is the reference phylogenetic tree that 

was used to compare with resultant trees, and dissimilarity between reference and resultant 
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distance matrices was considered to measure the performance. Fig 4.8 is the resultant phylogenetic 

tree after applying KLD analysis on OTU frequencies. Samples from same person or same 

population group or even similar age groups were observed to often share the same nodes in the 

tree. To study the dissimilarity between reference and resultant distance matrices, average pairwise 

Euclidean distance between two distance matrices was calculated and found to be 0.3276. 

Furthermore, Principle Coordinate Analysis was implemented on different population groups to 

see which population groups are more similar. PCoA plot Fig 4.6, there is certain clustering of 

African and Turkish samples and they seem to be closer to each other than they are to Hispanic 

and Chinese samples reflecting their geographical locations. PCoA plots on other population 

groups are listed in the Appendix A section of this thesis. 

 

 

Fig 4.6 PCoA plot from KLD analysis of OTU frequencies of 16 samples from 4 population 

groups  
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Fig 4.7 Reference Phylogenetic tree depending on geographical distance between 

population groups 
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Fig 4.8 Phylogenetic tree based on KLD analysis of OTU frequencies 
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4.3.2 KLD analysis of unweighted k-mer frequencies: 

 KLD analysis of unweighted k-mer frequencies as explained in section 2.7.2 was applied 

for three cases of k=1, 2 and 3. Average Euclidean pairwise distance between reference and 

resultant distance matrices were 0.3806, 0.3479 and 0.3602 for k=1, 2 and 3 respectively. K-mer 

(k-2) frequencies produced less dissimilarity from reference distance matrix, hinting that 

phylogenetic tree in Fig 4.13 is more similar to reference phylogenetic tree than those in Fig 4.12 

and 4.14. Moreover, longer branches in Fig 4.13 indicate that k-2 frequencies resulted in more 

widely spread cluster i.e., samples were comparatively more distinct in case of k-2. In the PCoA 

plots compared in Fig 4.9, 4.10 and 4.11, Hispanic samples are clustered distinct from rest of the 

population groups. Moreover, axes lengths suggest that k-mer frequencies for k-2 can be more 

distinctive than k-1 and k-3. PCoA plots on other population groups are listed in the Appendix B 

section of this thesis. 

 

Fig 4.9 PCoA plot from KLD analysis of unweighted k-mer (k=1) frequencies for 16 

samples from 4 population groups  
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Fig 4.10 PCoA plot from KLD analysis of unweighted k-mer (k=2) frequencies for 16 

samples from 4 population groups  

 

Fig 4.11 PCoA plot from KLD analysis of unweighted k-mer (k=3) frequencies for 16 

samples from 4 population groups  
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Fig 4.12 Phylogenetic tree based on KLD analysis of unweighted k-mer (k-1) frequencies 
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Fig 4.13 Phylogenetic tree based on KLD analysis of unweighted k-mer (k-2) frequencies 
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Fig 4.14 Phylogenetic tree based on KLD analysis of unweighted k-mer (k-3) frequencies 
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4.3.3 KLD analysis over weighted k-mer frequencies: 

 KLD analysis of weighted k-mer frequencies as explained in section 2.7.3 was applied for 

all three cases of k=1, 2 and 3. Average Euclidean pairwise distance between reference and 

resultant distance matrices were 0.3718, 0.3425 and 0.3630 for k=1, 2 and 3 respectively. Similar 

to unweighted frequencies, distance matrix from KLD analysis on k-mer (k-2) frequencies resulted 

in less dissimilarity from reference distance matrix. Longer branch lengths in phylogenetic tree 

shown in Fig 4.19 suggest that k-mer frequencies with k-2 can be more effective in distinguishing 

samples than k-1 (Fig 4.18) and k-2 (Fig 4.20). When compared to unweighted frequencies, 

weighted frequencies produced less dissimilarity between reference and resultant distance 

matrices. Fig 4.16 shows that samples in case of k-mer frequencies with k-2 are more widely spread 

than in case of k-1 (Fig 4.15) and k-3 (Fig 4.17), indicating that k-2 frequencies are more 

distinguishing. PCoA plots on other population groups are listed in the Appendix C section of this 

thesis. 

 

Fig 4.15 PCoA plot from KLD analysis of weighted k-mer (k=1) frequencies of 16 samples 

from 4 population groups  
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Fig 4.16 PCoA plot from KLD analysis of weighted k-mer (k=2) frequencies for 16 samples 

from 4 population groups  

 

Fig 4.17 PCoA plot from KLD analysis of weighted k-mer (k=3) frequencies for 16 samples 

from 4 population groups  
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Fig 4.18 Phylogenetic tree based on KLD analysis of weighted k-mer (k-1) frequencies 
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Fig 4.19 Phylogenetic tree based on KLD analysis of weighted k-mer (k-2) frequencies 
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Fig 4.20 Phylogenetic tree based on KLD analysis of weighted k-mer (k-3) frequencies 
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4.3.4 KLD analysis over unweighted k-mer frequencies from mapped 

sequences: 

 After mapping sequences from V3 hypervariable region as explained in section 2.8, KLD 

analysis was repeated on unweighted and weighted frequencies of mapped OTU sequences using 

equations from sections 2.7.2 and 2.7.3 respectively. Figures 4.22 and 4.23 are the phylogenetic 

trees from KLD on unweighted k-mer frequencies from mapped OTU sequences. 0.3797 and 

0.3363 were the average Euclidean pair-wise distances between resultant and reference distance 

matrices for k-1 and k-2 respectively. Comparatively, Fig 4.23 has longer branches, indicating that 

unweighted mapped k-2 frequencies are better in distinguishing in samples. Both PCoA plots in 

Fig 4.21 show distinct clustering of Hispanic samples but there is no significant record of which 

case of k-mer yields better distinction among samples. PCoA plots on other population groups are 

listed in the Appendix D section of this thesis. 

  

Fig 4.21 PCoA plot from KLD analysis of unweighted k-mer (k-1 on the left; k-2 on the 

right) frequencies of 16 samples from 4 population groups  
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Fig 4.22 Phylogenetic tree based on KLD analysis of unweighted k-mer (k-1) frequencies 

from mapped sequences  
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Fig 4.23 Phylogenetic tree based on KLD analysis of unweighted k-mer (k-2) frequencies 

from mapped sequences  
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4.3.5 KLD analysis over weighted k-mer frequencies from mapped sequences: 

 Figures 4.25 and 4.26 are the phylogenetic trees from KLD on weighted k-mer frequencies 

from mapped OTU sequences. 0.3787 and 0.3315 were the average Euclidean pair-wise distances 

between resultant and reference distance matrices for k-1 and k-2 respectively. Among weighted 

and unweighted frequencies form both unmapped and mapped sequences, weighted k-2 

frequencies from mapped OTU sequences produced relatively effective results with least 

dissimilarity from reference distance matrix. Phylogenetic tree from k-2 frequencies (Fig 4.26) has 

longer branches suggesting that k-mer frequencies with k-2 are more distinguishing than k-1 (Fig 

4.25). Fig 4.24 shows that samples in case of k-2 frequencies are more widely spread than in case 

of k-1, indicating that k-2 frequencies are more distinguishing. PCoA plots on other population 

groups are listed in the Appendix E section of this thesis. 

  

Fig 4.24 PCoA plot from KLD analysis of weighted k-mer (k-1 on the left; k-2 on the right) 

frequencies of 16 samples from 4 population groups  
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Fig 4.25 Phylogenetic tree based on KLD analysis of weighted k-mer (k-1) frequencies from 

mapped sequences  
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Fig 4.26 Phylogenetic tree based on KLD analysis of weighted k-mer (k-2) frequencies from 

mapped sequences  
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4.4 Unique signatures of k-mer frequencies 

In previously mentioned methods, frequencies and k-mers of identified and classified OTUs were 

used where as the sequences which could not be identified as an OTU by the GreenGenes reference 

database were ignored. In an effort to include the unclassified sequences, a novel technique is used 

to classify the sequences depending on their k-mer profiles. FASTA files of representative 

sequences from QIIME were aligned and used to extract 65 nucleotides of V3 hypervariable 

region.  K-mer frequencies, both k-1 and k-2 were calculated using Bioinformatics toolbox in 

MATLAB. Unique k-mer frequencies from the entire data set were found and their frequency in 

each sample was recorded. Additionally, sequences were mapped as explained in section 2.8, and 

unique k-mer frequencies (k-1 and k-2) and their frequencies in each sample were calculated. 

Number of unique k-mer frequencies found in the entire data for 4 different cases are put in table 

4.1. 

Table 4.1 Number of unique k-mer frequencies found in different cases of k 

k-mer Unmapped Mapped 

k-1 3459 32731 

k-2 35647 37286 

k-3 26529  

 

 K-mer frequencies were then clustered using K-means clustering to compress the data. To 

decide the number of clusters (value of K), average silhouette and number of negative silhouette 

values for different cluster sizes are calculated and compared. Value of K that resulted in higher 

average silhouette value and less negative silhouette values was chosen for different cases of k-

mer from figures 4.27 to 4.31. The chosen value of K for each case of k-mer is put in table 4.2 
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Table 4.2 Number of clusters (K) chosen for different cases of k 

k-mer Unmapped Mapped 

k-1 225 100 

k-2 150 275 

k-3 450  

 

 

 

 
 

Fig 4.27 Average Silhouette values and number of negative silhouette values for different 

number of clusters for k-1  
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Fig 4.28 Average Silhouette values and number of negative silhouette values for different 

number of clusters for k-2 

 
Fig 4.29 Average Silhouette values and number of negative silhouette values for different 

number of clusters for k-3  
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Fig 4.30 Average Silhouette values and number of negative silhouette values for different 

number of clusters for k-1 from mapped sequences 

 
Fig 4.31 Average Silhouette values and number of negative silhouette values for different 

number of clusters for k-2 from mapped sequences 
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After clustering, mean of k-mer frequencies in each cluster was considered as the signature of the 

cluster and the sum of frequencies of k-mer frequencies within a cluster was considered the 

occurrence of that particular cluster. Occurrence of clusters in each sample were used to calculate 

the frequencies of clusters in a sample. These frequencies were further used to calculate KLD 

between samples and build distance matrix using the equations 4.1 and 4.2 where value of t= {225, 

150, 450, 100 and 275} for k-1, k-2, k-3 mapped k-1 and mapped k-2 respectively. 

 

𝐷𝐾𝐿𝐷
𝑠𝑖𝑔𝑛

(𝑆𝑖||𝑆𝑗) = ∑ 𝑄𝑖
𝑟𝑙𝑜𝑔

𝑄𝑖
𝑟

𝑄𝑗
𝑟

𝑡
𝑟=1    Equation 4.1 

𝑑𝑖=1−𝑛,𝑗=1−𝑛
𝑠𝑖𝑔𝑛

=
1

2
[𝐷𝐾𝐿𝐷

𝑠𝑖𝑔𝑛
(𝑆𝑖||𝑆𝑗) + 𝐷𝐾𝐿𝐷

𝑠𝑖𝑔𝑛
(𝑆𝑗||𝑆𝑖)]   Equation 4.2 

 

 

4.5 Unsupervised machine learning of population groups 

using unique k-mer frequencies 

 Frequencies of clusters that were built from unique k-mer frequencies in section 4.4 were 

used to apply KLD analysis between samples. Figures 4.32, 4.33 and 4.34 are the phylogenetic 

trees from KLD analysis on signatures from k-mer frequencies with k-1, k-2 and k-3 respectively. 

Dissimilarity from reference phylogenetic tree that is found by calculating average Euclidean Pair-

wise distances between resultant and reference distance matrices for k=1, 2 and 3 were 0.3189, 

0.3298 and 0.3232 respectively suggesting that unique k-mer signatures for k=1 are more similar 

to reference phylogenetic tree than k-2 and k-3; moreover, longer branch lengths in Fig 4.32 

suggests that signatures from unique k-1 frequencies are more distinguishing than signatures from 

unique k-2 and k-3 frequencies. PCoA plots on various population groups are listed in the 

Appendix F section of this thesis. 
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Fig 4.32 Phylogenetic tree based on KLD analysis on unique signatures of k-mer (k-1) 

frequencies  
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Fig 4.33 Phylogenetic tree based on KLD analysis on unique signatures of k-mer (k-2) 

frequencies  
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Fig 4.34 Phylogenetic tree based on KLD analysis on unique signatures of k-mer (k-3) 

frequencies 
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 Furthermore, frequencies of clusters that were built from unique k-mer frequencies, with 

k=1 and 2, from mapped sequences were used to apply KLD analysis between samples. Figures 

4.36 and 4.37 are the respective phylogenetic trees from k-1 and k-2 frequencies. Average 

Euclidean Pair-wise distances between resultant and reference distance matrices for k-1 and k-2 

were 0.3409 and 0.3084 respectively. Signatures from unique k-mer frequencies (k-1) from 

mapped sequences yielded the least dissimilarity among on all the cases that were applied in this 

work; moreover, distinct and longer branch lengths in Fig 4.37 suggest that signatures from unique 

k-2 frequencies distinguish better. PCoA plot on the right of Fig 4.35 is fairly more distinct than 

that on the right indicating that signatures from unique k-2 frequencies from mapped sequences 

are more distinguishing. PCoA plots on other population groups are listed in the Appendix section 

of this thesis. 

 

  

Fig 4.35 PCoA plot from KLD analysis of signatures from unique k-mer (k-1 on the left; k-

2 on the right) frequencies from mapped sequences of 16 samples from 4 population groups  

 

 



www.manaraa.com
86 

 
Fig 4.36 Phylogenetic tree based on KLD analysis on unique signatures of k-mer (k-1) 

frequencies from mapped sequences 
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Fig 4.37 Phylogenetic tree based on KLD analysis on unique signatures of k-mer (k-2) 

frequencies from mapped sequences 
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4.6 Ensemble learning of samples using OTU and signature 

frequencies 

 Frequencies of OTU sequences and k-mer signatures were further used to identify the 

population group of samples using Ensemble learning classifier. Due to small number of samples, 

Leave One Out Cross Validation (Loo-CV) technique was adopted where the classifier was tested 

on one sample while the rest of the data was used to train the classifier. In an effort to avoid having 

biased data, equal number of samples from two different population groups were used while 

training the classifier. For example, to classify African and Asian population groups, 4 African 

samples along with every possible combination of 4 from 10 Asian samples were classified and 

their average accuracy rate is recorded. Number of classification iterations executed for every two 

population groups are listed below from tables 4.3 to 4.10. 

Table 4.3 Number of iterations to classify African with rest of the population groups 

 African (4 samples) 

Turkish (4 samples) 1 

Chinese (4 samples) 1 

Hispanic (4 sample) 1 

Middle Eastern (9 samples) 𝐶(9,4) = 126 

Caucasian (10 samples) 𝐶(10,4) = 210 

Asian (10 samples) 𝐶(10,4) = 210 

Asian Indian (12 samples) 𝐶(12,4) = 495 

African American (12 samples) 𝐶(12,4) = 495 

 Total=1539 
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Table 4.4 Number of iterations to classify Turkish with rest of the population groups 

 Turkish (4 samples) 

Chinese (4 samples) 1 

Hispanic (4 sample) 1 

Middle Eastern (9 samples) 𝐶(9,4) = 126 

Caucasian (10 samples) 𝐶(10,4) = 210 

Asian (10 samples) 𝐶(10,4) = 210 

Asian Indian (12 samples) 𝐶(12,4) = 495 

African American (12 samples) 𝐶(12,4) = 495 

 Total=1538 

 

Table 4.5 Number of iterations to classify Chinese with rest of the population groups 

 

 Chinese (4 samples) 

Hispanic (4 sample) 1 

Middle Eastern (9 samples) 𝐶(9,4) = 126 

Caucasian (10 samples) 𝐶(10,4) = 210 

Asian (10 samples) 𝐶(10,4) = 210 

Asian Indian (12 samples) 𝐶(12,4) = 495 

African American (12 samples) 𝐶(12,4) = 495 

 Total=1537 
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Table 4.6 Number of iterations to classify Hispanic with rest of the population groups 

 

 Hispanic (4 samples) 

Middle Eastern (9 samples) 𝐶(9,4) = 126 

Caucasian (10 samples) 𝐶(10,4) = 210 

Asian (10 samples) 𝐶(10,4) = 210 

Asian Indian (12 samples) 𝐶(12,4) = 495 

African American (12 samples) 𝐶(12,4) = 495 

 Total=1536 

  

 

 

 

 

 

 

 

 

Table 4.7 Number of iterations to classify Middle Eastern with rest of the population 

groups  

 

 Middle Eastern (9 samples) 

Caucasian (10 samples) 𝐶(10,9) = 10 

Asian (10 samples) 𝐶(10,9) = 10 

Asian Indian (12 samples) 𝐶(12,9) = 220 

African American (12 samples) 𝐶(12,9) = 220 

 Total=460 
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Table 4.8 Number of iterations to classify Caucasian with rest of the population groups 

 

 Caucasian (10 samples) 

Asian (10 samples) 1 

Asian Indian (12 samples) 𝐶(12,10) = 66 

African American (12 samples) 𝐶(12,10) = 66 

 Total=133 

  

 

 

 

 

Table 4.9 Number of iterations to classify Asian with rest of the population groups 

 Asian (10 samples) 

Asian Indian (12 samples) 𝐶(12,10) = 66 

African American (12 samples) 𝐶(12,10) = 66 

 Total=132 

 

 

 

 

Table 4.10 Number of iterations to classify Asian Indian with African American 

 Asian Indian (12 samples) 

African American (12 samples) 1 

 Total=1 
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4.6.1 Ensemble learning using OTU frequencies: 

After applying Ensemble Bagging algorithm with 500 Tree learning cycles for each iteration, 

accuracy rates for each population group are calculated from the resulting confusion matrix in Fig 

4.38. 

 

Fig 4.38 Confusion matrix from classifying samples using OTU frequencies  

 For each row that represents different population group in Fig 4.38, last column in green 

color represents the sum of samples in that particular population group. The values that are marked 

darker blue in shape of a diagonal represent the number of samples that were predicted accurately. 

From confusion matrix Fig 4.38, accuracy rates of population groups and average accuracy of the 

classification model is calculated as explained from section 2.10. 
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Table 4.11 Accuracy rates of Loo-CV of Ensemble bag tree learning of population groups 

using OTU Frequencies 

Population group Accuracy % 

African 75.34 

Turkish 85.56 

Chinese 57.46 

Hispanic 89.37 

Middle Eastern 76.58 

Caucasian 71.96 

Asian 81.47 

Asian Indian 70.51 

African American 68.67 

Average accuracy 75.21 

 

Table 4.11 display average accuracy of Loo-CV Ensemble classification of population groups 

using OTU frequencies as 75.21% with highest accuracy recognized in Hispanic and lowest in 

Chinese. 

 

4.6.2 Ensemble learning using signatures from k-mer (k-1) frequencies: 

 Figure 4.39 is the resultant confusion matrix from ensemble learning of population groups 

using frequencies of signatures from k-mer frequencies (k-1). The values that are marked darker 

blue in shape of a diagonal in Fig 4.39 represent the number of samples that were predicted 

accurately out of total number of samples marked green in the last column. Table 4.12 shows that 

highest accuracy was found in Turkish and lowest in Caucasian. 
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Fig 4.39 Confusion matrix from classifying samples using signature frequencies from 

unique k-mer (k-1) frequencies 

 

 

 

 

 

Table 4.12 Accuracy rates of Loo-CV of Ensemble bag tree learning of population groups 

using signatures of k-mer (k-1) frequencies 

Population group Accuracy % 

African 85.74 

Turkish 92.55 

Chinese 66.47 

Hispanic 56.43 

Middle Eastern 75.04 

Caucasian 57.75 

Asian 73 

Asian Indian 68.02 

African American 73.96 

Average accuracy 72.11 
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4.6.3 Ensemble learning using signatures from k-mer (k-2) frequencies: 

Figure 4.40 is the resultant confusion matrix from ensemble learning of population groups using 

frequencies of signatures from k-mer frequencies (k-2). Values marked in blues depict the number 

of samples that were accurately predicted out of total number of samples marked in green. 

Table 4.13 display the accuracy rates of population groups calculated from confusion matrix Fig 

4.40 with highest accuracy in African samples and least in Caucasian. 

 

Fig 4.40 Confusion matrix from classifying samples using signature frequencies from 

unique k-mer (k-2) frequencies 
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Table 4.13 Accuracy rates of Loo-CV of Ensemble bag tree learning of population groups 

using signatures of k-mer (k-2) frequencies 

Population group Accuracy % 

African 97.9 

Turkish 87.1 

Chinese 75.33 

Hispanic 83.44 

Middle Eastern 70.2 

Caucasian 51.61 

Asian 76.75 

Asian Indian 68.13 

African American 65.84 

Average accuracy 75.14 

 

 

 

4.6.4 Ensemble learning using signatures from k-mer (k-3) frequencies: 

Figure 4.41 is the resultant confusion matrix from ensemble learning of population groups using 

frequencies of signatures from k-mer frequencies (k-3). Values marked in blues depict the number 

of samples that were accurately predicted out of total number of samples marked in green. 

Table 4.14 display the accuracy rates of population groups calculated from confusion matrix Fig 

4.41 with highest accuracy in African samples and least in Caucasian. 
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Fig 4.41 Confusion matrix from classifying samples using signature frequencies from 

unique k-mer (k-3) frequencies 

 

 

 

Table 4.14 Accuracy rates of Loo-CV of Ensemble bag tree learning of population groups 

using signatures of k-mer (k-3) frequencies 

Population group Accuracy % 

African 87.39 

Turkish 86.56 

Chinese 76.66 

Hispanic 69.15 

Middle Eastern 77.25 

Caucasian 55.58 

Asian 79.82 

Asian Indian 72.4 

African American 63.55 

Average accuracy 74.27 
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4.6.5 Ensemble learning using signatures from k-mer (k-1) frequencies of 

mapped sequences: 

 Figure 4.42 is the resultant confusion matrix from ensemble learning of population groups 

using frequencies of signatures from k-mer frequencies (k-1) from mapped sequences. Values 

marked in blues depict the number of samples that were accurately predicted out of total number 

of samples marked in green. Table 4.15 display the accuracy rates of population groups calculated 

from confusion matrix Fig 4.42 with highest accuracy in African samples and least in Caucasian, 

similar to the results in case of k-2 frequencies. 

 

 

 

Fig 4.42 Confusion matrix from classifying samples using signature frequencies from 

unique k-mer (k-1) frequencies from mapped sequences 
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Table 4.15 Accuracy rates of Loo-CV of Ensemble bag tree learning of population groups 

using signatures of k-mer (k-1) frequencies from mapped sequences 

Population group Accuracy % 

African 98.78 

Turkish 92.6 

Chinese 68.85 

Hispanic 73.17 

Middle Eastern 70.74 

Caucasian 55.85 

Asian 74.82 

Asian Indian 65.56 

African American 69.11 

Average accuracy 74.39 

 

 

4.6.6 Ensemble learning using signatures from k-mer (k-2) frequencies of 

mapped sequences: 

 Fig 4.43 is the confusion matrix from ensemble learning of population groups using 

frequencies of signatures from k-mer (k-2) frequencies from mapped sequences. Values marked 

in blues depict the number of samples that were accurately predicted out of total number of samples 

marked in green. Table 4.16 display accuracy rates of population groups calculated from confusion 

matrix Fig 4.43. Signatures from k-mer frequencies (k-2) of mapped sequences resulted in the most 

efficient result with 75.71% average accuracy with highest in African, Turkish and lowest in 

Caucasian. 
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Fig 4.43 Confusion matrix from classifying samples using signature frequencies from 

unique k-mer (k-2) frequencies from mapped sequences 

 

 

 

 

Table 4.16 Accuracy rates of Loo-CV of Ensemble bag tree learning of population groups 

using signatures of k-mer (k-2) frequencies from mapped sequences 

Population group Accuracy % 

African 85.7 

Turkish 85.72 

Chinese 78.68 

Hispanic 75.69 

Middle Eastern 76.43 

Caucasian 60.82 

Asian 78.96 

Asian Indian 71.6 

African American 67.8 

Average accuracy 75.71 
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4.6.7 Ensemble learning using relatively more accurate signatures from k-mer 

frequencies for each population group: 

 From tables 4.12 to 4.16, signature k-mer frequencies that caused the highest accuracy for 

each population group was noted and combined to build a new confusion matrix Fig 4.44. Table 

4.17 presents the highest accuracy achieved for each population group and their average accuracy. 

An average of 79.65% was achieved, which is 4% more than the accuracy achieved by using OTU 

frequencies. 

 

 
Fig 4.44 Confusion matrix from application of relatively better performing signature k-mer 

frequencies for each population group 
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Table 4.17 Accuracy rates of Loo-CV of Ensemble bag tree learning of population groups 

using better performing signatures of k-mer frequencies for each population group 

Population group k-mer signature Accuracy % 

African Mapped K1 98.78 

Turkish Mapped K1 92.6 

Chinese Mapped K2 78.68 

Hispanic K2 83.44 

Middle Eastern Mapped K2 76.43 

Caucasian Mapped K2 60.82 

Asian K3 79.82 

Asian Indian K3 72.4 

African American K1 73.96 

Overall accuracy 79.65 

 

 

 

Summarization of accuracy levels for different population groups for different cases of k-mer is 

given in table 5.3. 
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 Conclusions 
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Chapter 5 restates the problem statement and goal of this thesis. This chapter summarizes the 

achieved results and the limitations that were encountered in the process. Prospective work from 

this research is also addressed in this chapter.  

 

5.1 Summary 

 The main objective of this research is to distinguish and identify the population group of 

individuals by studying the skin bacterial communities on the palm regions. For this particular 

work, 69 hand-swab samples collected from 39 people of 9 different population groups were used 

to analyze hypervariable region (V3) of the bacterial 16S ribosomal RNA (rRNA) gene. 

Representative consensus sequences of genus level OTUs extracted from V3 hypervariable region 

which is 65 nucleotide long are the prime focus of this thesis. In addition to OTUs, frequencies of 

nucleotide k-mers with k-1, 2 and 3 i.e. frequencies of {A, C, G,T}, {AA, AC, AG, AT, … TT} 

and {AAA, and AAC, AAG, AAT, … TTT} respectively were considered to determine clustering 

of multiple population groups. The strategy of using k-mer frequencies as a feature to distinguish 

individuals was verified by comparing k-mer frequencies of sequences representing same OTU, 

but from 4 different samples in Fig 5.1. After application of KLD analysis, dissimilarity of the 

resultant phylogenetic tree from a reference phylogenetic tree is considered as the measure of 

performance for different applications of k-mer frequencies. Furthermore, structure of the 

hypervariable region V3 shown in Fig 5.2 was taken into consideration to perform KLD analysis 

of k-mer frequencies. 65 positions of hypervariable region V3 of 16S rRNA were mapped into 47 

elements based on the nucleotide links in the V3 hypervariable region as shown in Fig 5.3. 
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Fig 5.1 k-mer  (k=2) frequencies in genus level OTU Staphylococcus from 4 different 

samples 

 

 

Fig 5.2 Nucleotide bond structure in 16S rRNA V3 region 

  

 

Fig 5.3 Mapping of 65nt of 16S rRNA into 47 elements 
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 K-mer frequencies of the mapped sequences were further used to apply KLD analysis. In 

case of mapped sequences, k-mer analysis is stopped with k=2 because k=3 resulted in 8000 k-

mers where the majority of the k-mers could not be found in the mapped sequences. Table 5.1 

shows that mapped OTU frequencies resulted in the least dissimilarity when compared to using 

different cases of k-mer frequencies. Table 5.1 shows that OTU frequencies resulted in the least 

dissimilarity when compared to using different cases of k-mer frequencies. It is also apparent that 

mapped sequences based on their structure perform better than unchanged sequences with an 

exception of k1. 

Table 5.1 Dissimilarity of resultant phylogenetic tree for different applications of KLD 

 

Dissimilarity of resultant  

phylogenetic tree  

(Average Euclidean  

Pair-wise  

Distance)  

Features adopted to 

calculate KLD between  

samples 

Unmapped Sequences 
Mapped 

Sequences 

OTU frequencies 0.3276 

Unweighted k-mer frequencies for k-1 0.3806 0.3797 

Weighted k-mer frequencies for k-1 0.3718 0.3787 

Unweighted k-mer frequencies for k-2 0.3479 0.3363 

Weighted k-mer frequencies for k-2 0.3425 0.3315 

Unweighted k-mer frequencies for k-3 0.3602 - 

Weighted k-mer frequencies for k-3 0.3630 - 

  

 In an attempt to include the ignored unclassified sequences in OTU methods, k-mer 

frequencies of all the representative consensus sequences, both unclassified and classified, from 
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the data set were calculated. K-mer frequencies that were unique in the data set, and their 

frequencies in each sample were noted. Unique k-mer frequencies were further clustered to 

compress the data, and sum of the frequencies of all the sequences in a single cluster was 

considered as the occurrence of that particular cluster. Frequencies of these k-mer clusters in each 

sample were then used to apply KLD between samples. Table 5.2 presents the dissimilarity 

between resultant and reference phylogenetic trees in different cases of k-mer signatures. K-mer 

signatures with k-2, from mapped sequences resulted in comparatively less dissimilarity than the 

rest; moreover, signatures from k-1 frequencies, and k-2 frequencies of mapped sequences both 

resulted in comparatively lesser dissimilarity than 0.3276 of OTU frequencies 

Table 5.2 Dissimilarity of resultant phylogenetic tree for different signatures of k-mer 

 

Set of K-mer frequency 

signatures 

Dissimilarity of resultant phylogenetic 

tree (Average Euclidean Pair-wise 

Distance) 

 

k-1 0.3189 

k-2 0.3298 

k-3 0.3248 

k-1 from mapped sequences 0.3409 

k-2 from mapped sequences 0.3084 

 

 

  Frequencies from OTUs and signature k-mers were further used to identify the population 

group using Leave-one-out Cross Validation of Ensemble Bag Tree learning. Accuracy rates for 

each population group in different cases of k-mer signatures are displayed in table 5.3. It can be 

observed that signatures of k-2 from mapped sequences resulted in comparatively better results 
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than rest of the signature k-mers, including OTU frequencies. African and Turkish achieved 

highest accuracy rates, while Caucasian showed the least accuracy. 

Table 5.3 Accuracy rates of Loo-CV of Ensemble bag tree learning of population groups in 

different cases 

Frequencies 

of… 

 

Population 

group  

OTU 
Signatures 

of k-1 

Signatures 

of k-2 

Signatures 

of k-3 

Signatures 

of k-1 

from 

mapped 

sequences 

Signatures 

of k-2 

from 

mapped 

sequences 

African 75.34 % 85.74 % 97.9 % 87.39 98.78 % 85.7 % 

Turkish 85.56 % 92.55 % 87.1 % 86.56 92.6 % 85.72 % 

Chinese 57.46 % 66.47 % 75.33 % 76.66 68.85 % 78.68 % 

Hispanic 89.37 % 56.43 % 83.44 % 69.15 73.17 % 75.69 % 

Middle 

Eastern 

76.58 % 75.04 % 70.2 % 77.25 70.74 % 76.43 % 

Caucasian 71.96 % 57.75 % 51.6 % 55.58 55.85 % 60.82 % 

Asian 81.47 % 73 % 76.75 % 79.82 74.82 % 78.96 % 

Asian 

Indian 

70.51 % 68.02 % 68.13 % 72.4 65.56 % 71.6 % 

African 

American 

68.67 % 73.96 % 65.84 % 63.55 69.11 % 67.8 % 

Average 

Accuracy 

75.21 % 72.11 % 75.14 % 74.27 74.39 % 75.71 % 

 

 

 Table 5.4 presents the highest achieved accuracy in each population group and their 

average value, which is considered as the overall accuracy of the approach. Overall accuracy of 

ensemble classification of population groups using k-mer frequencies is 79.65 % which is ~2% 

greater than the accuracy acquired by applying Support Vector Machine classification on 5 most 

occurring OTUs [22]. 
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Table 5.4 Highest accuracy rates of each population group and overall accuracy from k-

mer signatures 

Population group k-mer signature Accuracy % 

African Mapped K1 98.78 

Turkish Mapped K1 92.6 

Chinese Mapped K2 78.68 

Hispanic K2 83.44 

Middle Eastern Mapped K2 76.43 

Caucasian Mapped K2 60.82 

Asian K3 79.82 

Asian Indian K3 72.4 

African American K1 73.96 

Overall accuracy 79.65 

 

 

5.2 Conclusions and Future work 

 The set goal of classifying population groups by studying the hypervariable region V3 of 

16S rRNA genome of hand bacterial samples was achieved with 79.6 % accuracy. The emphasis 

of this thesis was using nucleotide sequences of hypervariable region V3 and their k-mers to study 

hand bacterial samples, in addition to the conventional OTU approach. Additionally, information 

that resides in the structure of 16S rRNA hypervariable region V3 was included through mapping 

technique. The highpoint of this thesis was, unclassified sequences that are generally ignored in 

other OTU methods were ensured to be included through a novel k-mer classification model. 

Among 9 different population groups from all over the world, 6 population groups namely African, 

Turkish, Chinese, Hispanic, Middle Eastern and Asian achieved accuracy greater than 75%, with 

African and Turkish achieving more than 90% accuracy. Table 5.3 shows that k-mer (k-2) 

frequencies from mapped sequences resulted .2% greater accuracy than the conventional OTU 

method, encouraging the idea of k-mer usage.  
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 However, hand bacterial samples that were included in this study does not specify other 

factors that could influence skin microbiome, for example, there is no record of when the 

individual last washed their hands before sample collection, or if the individual has lived in a 

country different from that of the origin of their population group. Also, among 9 hypervariable 

regions, only a single region was considered for the extraction and analysis of nucleotide 

sequences. Therefore, there is a scope for improving the methodology by considering other 

hypervariable regions of 16S rRNA. Considering multiple hypervariable regions could be 

beneficial while studying the structure of 16S rRNA and would allow using longer k-mers for 

classification, which was limited to k-3 in this study due to only 65 nucleotides. In addition to 16S 

rRNA, other parts of 70S ribosome i.e. 23S RNA could offer better understanding of bacteria with 

the application of k-mer classification. Furthermore, increasing the number of samples from 

different population groups would improve the performance of classification model by studying 

more and better patterns. More number of samples would allow to extend the study in terms of age 

and gender. 
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Appendix A: KLD analysis of OTU frequencies 
 

 

  

  

Fig A.1 PCoA plot from KLD analysis of OTU frequencies of all 69 samples (top left) from 

9 population groups, 39 samples (top right) from 5 population groups, 26 samples (bottom 

left ) from 3 population groups and 22 samples (bottom right) from 2 population groups 
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Appendix B: KLD analysis of unweighted k-mer frequencies 
 

 

  

  

Fig B.1 PCoA plot from KLD analysis of unweighted k-mer (k=1) frequencies of all 69 

samples (top left) from 9 population groups, 39 samples (top right) from 5 population 

groups, 26 samples (bottom left ) from 3 population groups and 22 samples (bottom right) 

from 2 population groups 
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Fig B.2 PCoA plot from KLD analysis of unweighted k-mer (k=2) frequencies of all 69 

samples (top left) from 9 population groups, 39 samples (top right) from 5 population 

groups, 26 samples (bottom left ) from 3 population groups and 22 samples (bottom right) 

from 2 population groups 
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Fig B.3 PCoA plot from KLD analysis of unweighted k-mer (k=3) frequencies of all 69 

samples (top left) from 9 population groups, 39 samples (top right) from 5 population 

groups, 26 samples (bottom left ) from 3 population groups and 22 samples (bottom right) 

from 2 population groups 
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Appendix C: KLD analysis of weighted k-mer frequencies 
 

 

  

  

Fig C.1 PCoA plot from KLD analysis of weighted k-mer (k=1) frequencies of all 69 

samples (top left) from 9 population groups, 39 samples (top right) from 5 population 

groups, 26 samples (bottom left ) from 3 population groups and 22 samples (bottom right) 

from 2 population groups 
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Fig C.2 PCoA plot from KLD analysis of weighted k-mer (k=2) frequencies of all 69 

samples (top left) from 9 population groups, 39 samples (top right) from 5 population 

groups, 26 samples (bottom left ) from 3 population groups and 22 samples (bottom right) 

from 2 population groups 
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Fig C.3 PCoA plot from KLD analysis of weighted k-mer (k=3) frequencies of all 69 

samples (top left) from 9 population groups, 39 samples (top right) from 5 population 

groups, 26 samples (bottom left ) from 3 population groups and 22 samples (bottom right) 

from 2 population groups 
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Appendix D: KLD analysis of unweighted k-mer frequencies 

from mapped sequences 
 

 

  

  

Fig D.1 PCoA plot from KLD analysis of unweighted k-mer (k=1) frequencies from 

mapped sequences of all 69 samples (top left) from 9 population groups, 39 samples (top 

right) from 5 population groups, 26 samples (bottom left ) from 3 population groups and 22 

samples (bottom right) from 2 population groups 



www.manaraa.com
126 

 

 

 

 

 

 

  

 
 

Fig D.2 PCoA plot from KLD analysis of unweighted k-mer (k=2) frequencies from 

mapped sequences of all 69 samples (top left) from 9 population groups, 39 samples (top 

right) from 5 population groups, 26 samples (bottom left ) from 3 population groups and 22 

samples (bottom right) from 2 population groups 
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Appendix E: KLD analysis of weighted k-mer frequencies 

from mapped sequences 
 

 

  

  

Fig E.1 PCoA plot from KLD analysis of weighted k-mer (k=1) frequencies from mapped 

sequences of all 69 samples (top left) from 9 population groups, 39 samples (top right) from 

5 population groups, 26 samples (bottom left ) from 3 population groups and 22 samples 

(bottom right) from 2 population groups 
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Fig E.2 PCoA plot from KLD analysis of weighted k-mer (k=2) frequencies from mapped 

sequences of all 69 samples (top left) from 9 population groups, 39 samples (top right) from 

5 population groups, 26 samples (bottom left ) from 3 population groups and 22 samples 

(bottom right) from 2 population groups 
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Appendix F: KLD analysis of signatures of unique k-mer 

frequencies  

  

  

 

 

Fig F.1 PCoA plot from KLD analysis of signatures from unique k-mer (k=1) frequencies 

from of all 69 samples (top left), 39 samples (top right), 26 samples (middle left ), 22 

samples (middle right) and 16 samples (bottom left) 
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Fig F.2 PCoA plot from KLD analysis of signatures from unique k-mer (k=2) frequencies 

from of all 69 samples (top left), 39 samples (top right), 26 samples (middle left ), 22 

samples (middle right) and 16 samples (bottom left) 

 



www.manaraa.com
131 

 

  

  

 

 

Fig F.3 PCoA plot from KLD analysis of signatures from unique k-mer (k=3) frequencies 

from of all 69 samples (top left), 39 samples (top right), 26 samples (middle left ), 22 

samples (middle right) and 16 samples (bottom left) 
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Appendix G: KLD analysis of signatures of unique k-mer 

frequencies from mapped sequences 
 

 

  

  

Fig G.1 PCoA plot from KLD analysis of signatures of unique k-mer (k=1) frequencies 

from mapped sequences of all 69 samples (top left) from 9 population groups, 39 samples 

(top right) from 5 population groups, 26 samples (bottom left ) from 3 population groups 

and 22 samples (bottom right) from 2 population groups 
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Fig G.2 PCoA plot from KLD analysis of signatures of k-mer (k=2) frequencies from 

mapped sequences of all 69 samples (top left) from 9 population groups, 39 samples (top 

right) from 5 population groups, 26 samples (bottom left ) from 3 population groups and 22 

samples (bottom right) from 2 population groups 
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